首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
针对无人机大包线一体化飞行控制要求,提出全包线模糊T-S(Takagi-Sugeno)建模方法.该方法根据非仿射系统的局部线性化原理,将模糊T-S建模转化为仅对模糊规则中隶属度函数的中心和宽度的优化过程,优化的代价函数为模糊T-S模型对无人机全包线稳定性和操纵性的逼近误差的加权值.基于敏感度逐步扩展前件变量的模糊集以实现全局优化,确定模糊规则的数量和隶属度函数的初值.采用对正则因子启发式调整的Levenberg-Marquardt算法进行快速的局部优化.算例表明,建模算法收敛迅速,所建立的模糊T-S模型采用少量模糊规则实现了对无人机全包线稳定性和操纵性的高精度逼近,适用于无人机全包线一体化控制.  相似文献   

2.
针对电液伺服速度系统的非线性和参数时变特性,提出了模糊增益调度控制方法.根据系统的输出误差和误差的一阶微分变化,利用模糊推理在线实时更改比例积分微分(PID,Proportion Integral Differential)控制器参数以适应工作点的变化,使系统控制参数达到全局优化,解决了一般增益调度中控制参数只是对于某一工作点局部优化的问题;在确定P和I隶属度函数时,引入指数函数保证了系统稳准前提下响应的快速性.试验研究表明,与单纯PID控制器相比,模糊增益调度缩短了动态响应时间、降低了超调、减小了负载扰动,说明该方法对非线性系统和未能精确建模系统大范围控制的有效性.   相似文献   

3.
基于遗传算法的高速飞行器模糊控制律设计   总被引:2,自引:0,他引:2  
以吸气式高超声速飞行器X-43A的纵向通道为控制对象,针对其6自由度非线性模型设计了飞行控制系统.飞行控制系统包括2个回路,制导回路采用PD控制器,控制回路应用模糊控制器.制导回路负责跟踪轨迹,控制回路执行制导指令.基于遗传算法实现了PD反馈参数和模糊控制规则的自动优化,无需先验知识和训练数据.在控制飞行器轨迹、姿态和推力时,综合考虑非线性动态特性、不确定性和约束.仿真表明,该方法可以同时满足飞行控制系统鲁棒性和优化过程收敛性的要求.   相似文献   

4.
以高超声速飞行器通用模型的俯仰通道为控制对象,针对其6自由度非线性模型设计了一体化飞控系统.飞控系统由1个模糊控制器和2个PD控制器组成.基于遗传算法实现了模糊控制规则和PD反馈参数的自动优化,无需先验知识和训练数据.仿真表明,该方法可以同时满足飞行控制系统鲁棒性和优化过程收敛性的要求,特别是鲁棒性优于同样采用模糊控制的经典双回路飞控系统.  相似文献   

5.
飞机环境控制系统的模糊控制研究   总被引:4,自引:0,他引:4  
地面实验表明,采用传统PID(Proportional-Integral-Differential)控制方法的飞机环境控制系统不能很好的解决电子设备和座舱的温度控制问题.采用了基于遗传算法优化的模糊控制方法,根据系统不同的工作任务,分别采用了2种模糊控制规则.通过优化输入输出变量的隶属度函数参数,使得新的模糊控制系统具有响应快、超调小、稳态精度高的特点.仿真表明,该模糊控制系统优于原系统并且能够满足飞机环境控制系统的设计要求.   相似文献   

6.
模糊滑模迭代学习控制算法在液压系统中应用   总被引:2,自引:1,他引:1  
普通比例(P, Proportion)和比例微分(PD, Proportion and Differential)迭 代学习控制(ILC, Iterative Learning Control)算法在液压位置伺服系统中收敛速度比较 慢,很难在实际中应用.为了提高ILC算法的收敛速度,将滑模控制算法引入ILC,提出模糊 滑模迭代学习控制(FSMILC, Fuzzy Sliding Mode Iterative Learning Control)算法,利 用滑模控制响应快的优点来加速ILC的收敛速度,利用模糊控制来减小滑模控制所引起的抖 动问题.FSMILC算法的实质是以系统的滑模函数作为模糊控制器的输入,以模糊控制器的输 出作为ILC的控制增量.通过仿真可以看出,FSMILC算法能够实现系统快速收敛,相对于P型 和PD型具有明显优势.   相似文献   

7.
讨论了本体姿态受控、位置不受控制的漂浮基空间机械臂系统协调运动的动力学控制问题. 根据系统位置几何关系、动量守恒关系和第二类拉格朗日方程, 建立漂浮基空间机械臂系统的动力学方程. 在此基础上, 针对系统参数未知的情况, 设计了一种采用小波基函数作为模糊隶属度函数的模糊神经网络控制器, 以控制空间机械臂的本体姿态和机械臂两关节铰协调地完成各自在关节空间的期望运动. 其特点是不要求系统动力学方程关于惯性参数呈线性函数关系, 甚至不需要知道系统参数;而且网络权值是采用反向传播算法根据误差进行在线学习, 使模糊神经网络获得更强的自学习和自适应能力, 同时也节省了离线学习的时间. 系统数值仿真的结果证实上述控制方案是行之有效的.   相似文献   

8.
针对无人机大包线飞行中气动特性大幅变化以及存在参数不确定性和外界干扰等特点,设计全包线模糊鲁棒跟踪控制器.通过模糊c-均值聚类建立逼近全包线动态的模糊T-S(Takagi-Sugeno)模型.基于高度和空速跟踪增广系统,根据保性能控制理论,采用广义系统的模糊Lyapunov函数方法,以线性矩阵不等式形式给出全包线模糊鲁棒跟踪控制器参数的约束条件,保证广义系统稳定.并最小化扰动抑制度来优化控制参数.该控制器既降低了控制保守性,又减小了参数求解的复杂度.仿真表明,无人机在整个飞行包线内能够精确地跟踪空速和高度参考指令,对参数不确定和外界干扰具有强鲁棒性.   相似文献   

9.
电液复合调节作动器的精确线性化建模与控制   总被引:1,自引:1,他引:0  
针对经典泵控电液作动器固有频率低的问题,对原系统增加了一个新设计的总压力控制阀,它可保证作动筒两个工作腔的压力之和始终为一常数并使两腔压力可控,从而使泵控系统达到和阀控系统相当的固有频率.这种改进型作动器称为EHCA(Electro-Hydraulic Compound regulating integrated Actuator).针对存在的相乘非线性控制问题,通过分析EHCA和总压力控制阀的工作原理,设计了基于精确线性化方法的滑模控制器,并分析了电机转速和变量泵排量在不同工况下的控制量大小配合问题.分析和仿真证明,该设计思想是有效实现高效率、节能和快响应的电液组合作动器方案.  相似文献   

10.
针对单一PWM控制的高速开关阀(HSV)存在响应慢和功耗大的问题,从信号产生机理出发,提出了一种复合PWM控制策略,该复合PWM由基准PWM、激励PWM、高频PWM及反向PWM组成。首先,给出复合PWM的作用机制与工作原理;其次,通过仿真分析了激励PWM、高频PWM及反向PWM的占空比在不同工况下对高速开关阀性能的影响规律;最后,分别为激励PWM、高频PWM及反向PWM的占空比设计了相应的基于状态量反馈的闭环控制器。结果表明:与单一PWM控制相比,所提出的复合PWM控制器可以有效减少线圈的功耗和阀芯的关闭时间,线圈电流在阀芯最大开口维持阶段降低约80%,阀芯关闭时间减少约62.5%。   相似文献   

11.
阐述基于模糊优化算法的导航系统惯性元件误差补偿方法.该方法的基本思想是将遗传算法与模糊逻辑推理相结合,保留遗传算法的强全局搜索能力,把隶属函数作为遗传的个体通过选择、交叉及变异等遗传操作使模糊规则得到进化,实现模糊规则的在线优化,进而根据优化了的模糊规则,再对遗传操作及参数在线进行调整,从而进一步优化模糊规则,使得模糊控制系统具有良好的"自进化"能力.仿真结果表明,该模糊优化算法对导航系统惯性元件的误差补偿是可行的,而且是有效的,具有一定的实用价值.   相似文献   

12.
针对欠驱动微小卫星的姿态稳定问题,提出了基于( w,z )参数化的稳定控制方案.( w,z )参数化是一种新的姿态描述方法,它通过两次垂直的旋转来表示卫星的姿态,补充了一次旋转的四元数法和三次旋转的欧拉角法等姿态描述的完整性.采用( w,z )参数化法建立了微小卫星的运动学和动力学模型,并设计了旋转轴稳定、角速率稳定以及姿态稳定等控制律,应用于非对称欠驱动卫星的稳定控制.以采用PWM(Pulse Width Modulation)技术的微型喷气系统作为执行机构进行欠驱动控制的仿真实验,表明了所提出控制方法的有效性.  相似文献   

13.
针对刚体卫星的姿态控制问题,设计了不存在和存在扰动力矩两种条件下的有限时间状态反馈控制律.对于无扰动力矩情形,基于非线性齐次系统性质,设计了一种便于工程实践性的连续、非奇异的比例微分形式控制算法,保证姿态闭环系统有限时间收敛到零点,而且此算法能直接推广到卫星姿态跟踪问题.对于存在扰动力矩的情形,基于有限时间Lyapunov定理设计的连续、非奇异的控制力矩保证卫星姿态和角速度在有限时间内收敛到原点附近的邻域.当外扰力矩为零时,此控制律使闭环系统状态有限时间收敛到平衡点.数学仿真结果说明了提出的控制算法有效.  相似文献   

14.
建立了带有太阳翼的挠性航天器的姿态动力学模型,应用改进的罗德里格参数来描述姿态运动学模型。针对挠性航天器模型参数不确定性和环境干扰等问题,提出了变论域自整定模糊比例积分微分(PID)控制方案,构建了计算简单并且可以达到控制精度的伸缩因子。基于Matlab/Simulink进行了仿真验证,结果表明,变论域自整定模糊PID 控制响应速度比传统PID控制、模糊PID控制快350s,且无超调,不仅能够使航天器完成对目标姿态的机动,而且能够有效地抑制挠性太阳翼的振动。  相似文献   

15.
The Attitude Control System (ACS) plays a pivotal role in the whole performance of the spacecraft on the orbit; therefore, it is vitally important to design the control system with the performance of rapid response, high control precision and insensitive to external perturbations. In the first place, this paper proposes two adaptive nonlinear control algorithms based on the sliding mode control (SMC), which are designed for small satellite attitude control system. The nonlinear dynamics describing the attitude of small satellite is considered in a circle reference orbit, and the stability of the closed-loop system in the presence of external perturbations is investigated. Then, in order to account for accidental or degradation fault in satellite actuators, the fault-tolerant control schemes are presented. Hence, two adaptive fault-tolerant control laws (continuous sliding mode control and non-singular terminal sliding mode control) are developed by adopting the nonlinear analytical model to describe the system, which can guarantee global asymptotic convergence of the attitude control error with the existence of unknown external perturbations. The nonlinear hyperplane based Terminal sliding mode is introduced into the control law design; therefore, the system convergence performance improves and the control error is convergent in “finite time”. As a result, the study on the non-singular terminal sliding mode control is the emphasis and the continuous sliding mode control is used to compare with the non-singular terminal sliding mode control. Meanwhile, an adaptive fuzzy algorithm has been proposed to suppress the chattering phenomenon. Moreover, several numerical examples are presented to demonstrate the efficacy of the proposed controllers by correcting for the external perturbations. Simulation results confirm that the suggested methodologies yield high control precision in control. In addition, actuator degradation, actuator stuck and actuator failure for a period of time are simulated to demonstrate the fault recovery capability of the fault tolerant controllers. The numerical results clearly demonstrate the good performance of the adaptive non-singular terminal control in the event of actuator fault compare with the continuous sliding mode control.  相似文献   

16.
针对传统航天姿控系统故障诊断与容错控制诊断精度及控制分配效率较低的问题,提出了一种基于深度神经网络的航天器姿态控制系统故障诊断与容错控制方法。以控制力矩陀螺为执行机构的航天器发生执行机构故障工况时,所提出的方法可保证鲁棒的姿态控制。首先,利用三个异构深度神经网络实现传统容错控制器的故障诊断、姿态控制和力矩分配等功能,建立了全神经网络的智能自适应容错控制器架构。然后,对三个神经网络的网络层数、神经元数目和激活函数等参数进行优化调整,对比分析了神经网络参数对控制器性能的影响。最后,对所提出的新型控制器在控制力矩陀螺发生故障时的控制精度和鲁棒性进行了仿真验证。仿真结果表明,对于具有冗余控制力矩陀螺的航天器,提出的方法不仅能在单一陀螺故障下实现高精度的容错控制,也能在发生多陀螺故障时保证一定的姿态稳定控制。  相似文献   

17.
卫星姿态控制系统在轨实时健康评估   总被引:1,自引:0,他引:1  
面向航天器在轨智能自主管控的技术需求,提出一种基于多级模糊综合评价架构的卫星姿态控制系统的在轨实时健康评估方法.根据卫星姿态控制系统的性能特点,按实际功能将其划分为姿态测量、控制器和执行机构3个部分.在确定各部分单元部件健康信息的基础上,基于模糊综合评价算法对各部分的健康度分别进行评估.基于评估所得到的姿态测量、控制器和执行机构3部分健康信息,根据各部分对系统健康的影响情况结合变权综合原理确定健康影响权重,采用模糊综合评价算法实现对姿态控制系统整体健康性能的综合评估.仿真实验结果表明,所提出的方法能够有效实现卫星姿态控制系统的在轨实时健康评估.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号