首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
为了深入研究介质阻挡放电等离子体流动控制机理,采用数值仿真方法研究了激励器定常、非定常工作模式下,等离子体流动控制对边界层影响,并分析了不同模式控制流动分离的能力。仿真结果表明:激励器定常工作时,在壁面形成射流,非定常工作时,则在激励器下游诱导产生了一系列旋涡,同时旋涡向下游的运动加剧主流与边界层混合;不同工作模式,等离子体激励都能有效控制流动分离;非定常激励时,脉冲占空比为0.6时仍能有效抑制流动分离,控制效率更高。  相似文献   

2.
为了在更高的风速下实现圆锥前体分离涡的控制,了解AC-DBD和NS-DBD激励器的激励特性,应用交流(AC)放电和纳秒脉冲(NS)放电等离子体激励对20°顶角的圆锥-圆柱组合体圆锥段前体非对称流场进行主动流动控制实验。实验在低速开口风洞中进行,迎角45°,风速5~22m/s,流动控制方式为等离子激励器关闭、左舷或右舷等离子体激励器开启三种模式。结果表明:风速5m/s时,通过AC-DBD的左、右舷激励可控制圆锥前体的非对称流场实现镜像对称,NS-DBD则无明显作用效果;随着风速的提高,AC-DBD对非对称载荷的控制作用逐渐减小,与此同时NS-DBD的控制作用逐渐增加;风速22m/s时,NS-DBD可实现圆锥前体非对称流场的镜像对称控制,而AC-DBD则无明显作用效果;相对于AC-DBD等离子体激励,NS-DBD对于更高速度下的分离涡流场控制是有效的。  相似文献   

3.
由于飞机起落架的很多结构可以简化为圆柱,可以通过研究等离子体抑制双柱绕流的噪声来研究等离子体抑制起落架气动噪声的可能性.实验在低速风洞中进行,来流速度分别为34、51、68和85 m/s,采用在上游圆柱体模型后半部的内外表面铺设四组等离子体激励器的方法,验证等离子体激励抑制双柱绕流气动噪声的效果.结果表明:应用等离子体主动流动控制技术,单频降噪量最大为6 dB,总声压级最大降低了3 dB,并对噪声峰值频率产生了影响,激励前的二阶频率约为390 Hz,激励后的二阶频率约为510 Hz.  相似文献   

4.
等离子体用于三角翼模型流动控制试验研究   总被引:2,自引:0,他引:2  
在不同试验风速下,通过风洞天平测力试验,研究了纳秒脉冲介质阻挡放电等离子体激励频率和激励电压对三角翼模型流动控制效果的影响。研究表明:激励频率和激励电压是等离子体流动控制效果的重要影响因素,在所研究的激励频率和激励电压范围中,当激励频率f=200Hz、激励电压为13kV时,等离子体激励可有效抑制三角翼前缘涡分离,流动控制效果最佳。试验风速30m/s时,最大升力系数由1.32增大到1.45,增大9.8%,最大升阻比提高2.9%;试验风速45m/s时,最大升力系数由1.33增大到1.45,增大9.0%,最大升阻比提高0.64%。  相似文献   

5.
等离子体控制翼型流动分离实验   总被引:1,自引:1,他引:0  
为了提高等离子体的流动控制能力,在常规大气环境,来流风速分别为20m/s、30m/s、40m/s条件下进行了介质阻挡放电抑制NACA0015翼型流动分离实验研究。结果表明:等离子体能有效的抑制分离,实现增升减阻,但随着来流风速增加,有效控制的起始和终止攻角均变大,攻角区域却逐渐变小;可以通过在翼型分离点附近布置等离子体激励器,在允许的范围内尽量提高输入功率,使控制效果达到最佳。  相似文献   

6.
在低速开口风洞中进行了等离子体激励器对NACA0015翼型流动分离控制的实验研究。采用PIV技术,对翼型绕流流场进行了测量,显示了施加等离子体激励后流场的变化。通过五分量天平对升力和阻力的测量,研究了激励电压和激励频率对翼型流动分离控制的规律。研究表明,低风速下在翼型前缘施加等离子体激励,能够有效地控制翼型流动分离,在来流为20m/s时,最大升力系数增加11%,失速迎角增加6°;在给定的流动状态下,激励电压和激励频率存在一个阈值,不同迎角下该阈值不同,迎角越大,分离越严重,对激励强度的要求也越高。  相似文献   

7.
毫秒脉冲等离子体激励改善飞翼的气动性能实验   总被引:3,自引:0,他引:3  
在来流速度为30m/s时,进行了毫秒脉冲介质阻挡放电等离子体激励改善飞翼气动性能的风洞实验.等离子体激励器布置在飞翼前缘,峰峰值电压为9.5kV时,放电的脉冲能量在0.1mJ/cm量级.通过六分量测力天平测力研究了脉冲激励频率和占空比对升/阻力系数、升阻比和俯仰力矩系数的作用效果.结果表明:等离子体激励可以有效改善飞翼大攻角气动特性;在最佳无量纲脉冲激励频率F+≈1时,临界失速迎角由14°提高到17°,最大升力系数提高10%;占空比对流动控制效果影响较大,减小占空比可以降低能耗,实验中最佳占空比为5%;俯仰力矩系数的变化表明施加等离子体激励改善了飞翼纵向静稳定性.   相似文献   

8.
在西北工业大学低湍流度风洞中采用新型等离子激励器对NACA0015翼型进行表面流动分离点的控制实验。实验风速为20m/s和35m/s,迎角为0°~16°。并参照压力分布的实验结果对流动控制的效果进行了对比分析。结果表明:翼型表面的气流分离点只要落在等离子体激励所形成的激励区内,分离点都会被推迟到靠近等离子体激励器的最末端电极处。证明等离子激励器能够对翼型表面的分离点进行有效控制。  相似文献   

9.
针对等离子体激励下的串列双圆柱绕流噪声抑制问题,通过将等离子体体积力模型、脱落涡模拟、声比拟理论等技术相结合的数值模拟方法,研究不同来流速度下等离子体激励器安装位置对双圆柱分离流形态控制与远场噪声抑制效果的影响。结果表明,当所施加的等离子体激励位于圆柱流动分离点附近时,控制措施可有效减小分离涡尺度和湍流强度,并显著降低远场监测点的总声压级。随着来流速度增大,等离子体激励器的降噪效果增强,同时最优安装位置前移。当来流速度达到55m/s时获得最优降噪效果,其远场监测点声压级频谱峰值和总声压级分别降低11.5dB和8.3dB。而随着来流速度的进一步增大,等离子体激励器的降噪效果逐渐减弱。所得结果对于等离子体流动控制抑制串列圆柱噪声的实际应用有一定指导意义。  相似文献   

10.
等离子体合成射流改善翼型气动性能实验研究   总被引:3,自引:2,他引:1       下载免费PDF全文
李洋  梁华  贾敏  宋慧敏  李军  魏彪  吴云 《推进技术》2017,38(9):1943-1949
等离子体合成射流(PSJ)是一种新型主动流动控制激励器,目前研究大多集中于激励特性,对于流动控制的应用研究还明显不足。为了深入探究PSJ翼型流动分离的控制能力与规律,以高升力翼型为载体,在翼型前缘施加等离子体合成射流激励(PSJA),研究激励器对升力特性的影响。结果表明:在翼型前缘施加PSJA,可以有效抑制流动分离;近失速迎角状态下,各个激励频率下都能产生良好的控制效果;过失速迎角状态下,低频效果最好,随激励电压增加,有效频率范围变宽;激励效果随来流速度增加而减弱,当来流速度20m/s时,翼型的失速迎角提高5°,最大升力系数提高8.1%;当来流速度为40m/s时,失速迎角提高3°,最大升力系数提高4.5%。  相似文献   

11.
低速翼型分离流动的等离子体主动控制研究   总被引:3,自引:0,他引:3  
为了研究等离子体激励器的放电形式及其诱导气流的规律,以及翼型迎角、自由来流速度分别对翼型流动分离抑制效果的影响。在低速、低雷诺数条件下利用介质阻挡放电等离子体激励器对NACA0015翼型进行了主动流动控制研究。结果表明:介质阻挡放电的形式为丝状放电;等离子体激励器诱导气流的方向由裸露电极指向覆盖电极,由电极的布置方式决定,与接线方式无关;当来流速度为25m/s,雷诺数为2.03×10^5时,等离子体气动激励可以有效地抑制翼型吸力面的流动分离,翼型最大升力系数增大约为9.7%,翼型l临界失速迎角由17.5°增大到20.5°;翼型失速延迟的真正原因并非单纯的气流加速;等离子体激励器的作用效果随着来流速度的提高而减弱,研究非定常激励或等离子体激励器与流场之间的耦合效应,也许更加具有潜力。  相似文献   

12.
A 15° swept wing with dielectric barrier discharge plasma actuator is designed.Experimental study of flow separation control with nanosecond pulsed plasma actuation is performed at flow velocity up to 40 m/s. The effects of the actuation frequency and voltage on the aerodynamic performance of the swept wing are evaluated by the balanced force and pressure measurements in the wind tunnel. At last, the performances on separation flow control of the three types of actuators with plane and saw-toothed exposed electrodes are compared. The optimal actuation frequency for the flow separation control on the swept wing is detected, namely the reduced frequency is 0.775, which is different from 2-D airfoil separation control. There exists a threshold voltage for the low swept wing flow control. Before the threshold voltage, as the actuation voltage increases, the control effects become better. The maximum lift is increased by 23.1% with the drag decreased by 22.4% at 14°, compared with the base line. However, the best effects are obtained on actuator with plane exposed electrode in the low-speed experiment and the abilities of saw-toothed actuators are expected to be verified under high-speed conditions.  相似文献   

13.
等离子体激励器通过产生的等离子加速气流,可以实现对流动的控制。单级等离子体激励器由于受到等离子体放电的物理限制,其控制作用较小;为了提高等离子体流动控制的效果,关于多级等离子体激励器的研究得到发展。采用图像采集和粒子示踪测速系统(PIV),对传统多级等离子体激励器和多级双极性等离子体激励器的放电现象以及气流加速进行研究,并通过流场速度分布计算等离子体激励器对空气产生的推力和吸力。结果表明:随着电压的升高,传统多级等离子体激励器产生的推力和吸力会逐渐减弱;而多级双极性等离子体激励器产生的推力和吸力均呈逐渐增强的趋势。  相似文献   

14.
翼型动态失速等离子体流动控制试验   总被引:1,自引:1,他引:0  
李国强  常智强  张鑫  阳鹏宇  陈立 《航空学报》2018,39(8):122111-122111
针对动态失速引起的翼型气动性能恶化的问题,利用小型化的激励电源和介质阻挡放电等离子体激励器,借助动态压力测量和外触发式粒子图像测速(PIV)等手段开展了翼型动态失速等离子体流动控制试验研究。结果表明,等离子体气动激励能够有效控制翼型动态失速,改善平均气动力,提高翼型气动效率,减小气动力随迎角变化的迟滞区域。等离子体诱导出前缘附近的贴体翼面涡,促进分离流再附;增加了上翼面0.2~0.4弦长区域的吸力,减小了升力系数功率谱密度(PSD)分布的二、三、四阶能量幅值,在研究工况下实现了平均升力系数增加7.1%、失速迎角推迟1.3°和迟滞区域减小4.5%的明显控制效果;4°~9°迎角段,等离子体使得翼型平均阻力系数减小40%。此外,振荡频率增加使翼型绕流的非定常性增强,较高雷诺数下的翼型动态分离涡更加难以被抑制,均需要增加等离子体激励强度才能达到较好的控制效果。  相似文献   

15.
等离子体流动控制研究进展与展望   总被引:29,自引:4,他引:25  
吴云  李应红 《航空学报》2015,36(2):381-405
等离子体流动控制是基于等离子体气动激励的新型主动流动控制技术,具有响应时间短、激励频带宽等显著技术优势,在改善飞行器/发动机空气动力特性方面具有广阔的应用前景,已成为国际上等离子体动力学与空气动力学交叉领域的前沿研究热点。鉴于此,从介质阻挡放电(DBD)、电弧放电等离子体气动激励特性,等离子体气动激励抑制流动分离、控制附面层、控制激波与激波/附面层干扰、控制压气机与涡轮内部流动、控制管道流动和飞行控制等方面,综合评述了国际上等离子体流动控制的研究进展情况;从创新等离子体气动激励方式,揭示等离子体气动激励与复杂流动的非定常耦合机制,突破等离子体流动控制系统关键技术等方面,对未来的发展进行展望。  相似文献   

16.
采用粒子图像测速(Particle Image Velocimetry,PIV)技术,研究了介质阻挡放电等离子体激励对NA-CA0015翼型表面流动分离的控制特性。通过风洞实验,研究了电极电压、电极位置和布置方式等参数对翼型分离控制的影响规律,并初步分析了等离子体流动控制机理。结果表明等离子体激励在失速迎角附近可以有效抑制翼型的流动分离,实现气流的完全再附着;在来流速度为20m/s时,将气流再附着的迎角提高了5°。  相似文献   

17.
倪芳原  史志伟  杜海 《航空学报》2014,35(3):657-665
利用数值模拟,研究了纳秒脉冲介质阻挡放电(NS-DBD)等离子体激励器在圆柱高速流动控制中的应用。首先,研究了单电极NS-DBD等离子体激励器在静止空气中放电后的流场特性。研究表明在介质阻挡放电形成的等离子体区域,有局部能量快速注入,放电结束5 μs后在上极板后端点位置形成了一个局部温度高达900 K的热点,由此引发很强的压力扰动,形成以上极板后端点位置为中心,扩散速度约为声速的半圆形压缩波。在此基础上,通过数值模拟研究了NS-DBD等离子体激励器布置在直径为6 mm的圆柱上,来流马赫数为Ma=4.6时,对圆柱脱体激波的控制作用。研究表明介质阻挡放电形成的半圆形压缩波对于脱体激波有很强的干扰作用,激波距离增加了15.7%,激波强度也有相应的减弱,导致阻力减少了13%。  相似文献   

18.
低雷诺数下层流分离的等离子体控制   总被引:1,自引:0,他引:1  
孟宣市  杨泽人  陈琦  白鹏  胡海洋 《航空学报》2016,37(7):2112-2122
为有效控制层流分离特性,消除或减弱低雷诺数时小迎角下的升力非线性现象,改善翼型升力特性,并通过翼型的上表面转捩带与油流显示测量对等离子体激励控制机理进行阐述,对厚度为16%椭圆翼型低雷诺数下的气动特性进行了风洞试验研究。在此基础上,在上表面前缘10%弦长处布置激励器,通过压力分布测量观察等离子体激励对层流分离的影响。试验结果表明:当翼型上表面仅发生层流分离时,等离子体激励和转捩带的作用类似,可以有效延迟或者消除后缘层流分离,从而增加升力;当翼型上表面出现层流分离气泡并发生再附现象时,等离子体可以有效减小或者消除层流分离泡的范围,从而减小升力;通过控制层流分离,占空循环等离子体激励可以实现对低雷诺数小迎角下的升力的线性控制。  相似文献   

19.
为揭示端壁等离子体气动激励抑制高负荷压气机叶栅角区流动分离的影响规律和流场特征,在不同流场参数和激励条件下分别开展了微秒脉冲和纳秒脉冲等离子体气动激励抑制叶栅流动分离的实验研究.结果表明:端壁等离子体气动激励可以有效抑制叶栅角区的流动分离,其作用效果在攻角为3°时最佳,随攻角的增大逐渐下降;微秒脉冲激励的流动控制效果随来流速度的增大而降低,随激励电压和占空比的增大而提高,最佳非定常脉冲频率为500Hz;在较高来流速度下,微秒脉冲激励的作用效果十分微弱,但纳秒脉冲激励能够有效抑制角区流动分离;纳秒脉冲激励的流动控制效果随激励电压增大而提高,激励频率对控制效果至关重要,作用效果随激励频率的增大而不断增强,但当激励频率为5kHz时,作用效果有所下降.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号