首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The decay times of meteor radar echoes have been used for decades to investigate characteristics of the mesosphere and lower thermosphere (MLT) region. As the meteor echo decay time depends on background atmospheric parameters, in the present communication, we examine the seasonal variation of the vertical distributions of underdense meteor echo decay times with respect to echo strength. Observations from two similar radars located at two distinct geographical locations, Thumba (8.5°N, 77°E) and Eureka (80°N, 85.8°W) were used for the present study. Here, the radar received signal power is categorized into strong and weak echoes and vertical profiles of their decay times are constructed. It has been noticed that the monthly mean decay time vertical profile turning altitude (i.e., inflection point) varies in the range of 80–87?km of altitude depending on latitude. The turning altitude is observed at relatively lower heights in the winter than in summer at both the latitudes. The present analysis shows that the meteor decay time below the mean turning altitude follows a decreasing trend with decreasing altitude, which is quite distinct to the behaviour of ambipolar diffusion. It is also observed that there is a difference in mean decay time of strong and weak echoes below 90?km of altitude, which is very prominently seen at lower altitudes. This difference shows a seasonal pattern at high latitude, but does not show any seasonal variation at low latitude. The present results are discussed in light of current understanding of the meteor decay time.  相似文献   

2.
The relative importance of the main drivers of positive ionospheric storms at low-mid latitudes is studied using observations and modeling for the first time. In response to a rare super double geomagnetic storm during 07–11 November 2004, the low-mid latitude (17°–48°N geomag. lat.) ionosphere produced positive ionospheric storms in peak electron density (NmF2) in Japan longitudes (≈125°–145°E) on the day of main phase (MP1) onset (06:30 LT) and negative ionospheric storms in American longitudes (≈65°–120°W) on the following day of MP1 onset (13:00–16:00 LT). The relative effects of the main drivers of the positive ionospheric storms (penetrating daytime eastward electric field, and direct and indirect effects of equatorward neutral wind) are studied using the Sheffield University Plasmasphere Ionosphere Model (SUPIM). The model results show that the penetrating daytime (morning–noon) eastward electric field shifts the equatorial ionisation anomaly crests in NmF2 and TEC (total electron content) to higher than normal latitudes and reduces their values at latitudes at and within the anomaly crests while the direct effects of the equatorward wind (that reduce poleward plasma flow and raise the ionosphere to high altitudes of reduced chemical loss) combined with daytime production of ionisation increase NmF2 and TEC at latitudes poleward of the equatorial region; the later effects can be major causes of positive ionospheric storms at mid latitudes. The downwelling (indirect) effect of the wind increases NmF2 and TEC at low latitudes while its upwelling (indirect) effect reduces NmF2 and TEC at mid latitudes. The net effect of all main drivers is positive ionospheric storms at low-mid latitudes in Japan longitude, which qualitatively agrees with the observations.  相似文献   

3.
IPM has detected nightside 135.6 nm emission enhancements over a wide latitude range, from the sub-auroral latitudes to the equatorial regions during geomagnetic storms. Our work, presented in this paper, uses the data of IPM to understand these 135.6 nm emission enhancements during of geomagnetic storms and studies the variations of total electron content (TEC) and the F2 layer peak electron density (NmF2) in the region of enhanced emissions. Middle and low latitude emission enhancements are presented during several medium storms in 2018. The variations of both the integrated electron content (IEC) derived from the nighttime OI 135.6 nm emission by IPM and TEC from the International GNSS Service (IGS) relative to the daily mean of magnetically quiet days of per each latitude bin (30°≦geographic latitude < 40°, 15°≦geographic latitude < 30°, 0°≦geographic latitude < 15°, ?15°≦geographic latitude < 0°, ?30°≦geographic latitude < -15°, ?40°≦geographic latitude < -30°) are investigated and show that on magnetically storm day, IEC by IPM always increases, while TEC from IGC may increase or decrease. Even if both increase, the increase of IEC is greater than that of TEC. From the comparison of IEC and TEC during magnetic storms, it can be seen that the enhancement of the nighttime 135.6 nm emissions is not entirely due to the ionospheric change. The time of IEC enhancements at each latitude bin is in good agreement, which mainly corresponds to the main phase time of the geomagnetic storm event and lasts until the recovery phase. The available ground-based ionosonde stations provide the values of NmF2 which match the 135.6 nm emissions measured by IPM in space and time. The variations of NmF2 squared can characterize the variations of the OI 135.6 nm emissions caused by O+ ions and electrons radiative recombination. The study results show that the OI 135.6 nm emission enhancements caused by O+ ions and electrons radiative recombination (where NmF2 squared increases) are obviously a contribution to the measured 135.6 nm emission enhancements by IPM. The contribution accounts for at least one of all contributions to the measured 135.6 nm emission enhancements by IPM. However, where the NmF2 squared provided by ionosonde decrease or change little (where the OI 135.6 nm emissions cause by O+ ions and electrons radiative recombination also decrease or change little), the emission enhancements measured by IPM at storm-time appear to come from the contributions of other mechanisms, such as energetic neutral atoms precipitation, or the mutual neutralization emission (O+ + O-→2O + h? (135.6 nm)) which also occupies a certain proportion in 135.6 nm airglow emission at night.  相似文献   

4.
The geomagnetic storm is a complex process of solar wind/magnetospheric origin. The variability of the ionospheric parameters increases substantially during geomagnetic storms initiated by solar disturbances. Various features of geomagnetic storm act at various altitudes in the ionosphere and neutral atmosphere. The paper deals with variability of the electron density of the ionospheric bottomside F region at every 10 km of altitude during intense geomagnetic storms with attention paid mainly to the distribution of the F1 region daytime ionisation. We have analysed all available electron density profiles from some European middle latitude stations (Chilton, Pruhonice, Ebro, Arenosillo, Athens) for 36 events that occurred in different seasons and under different levels of solar activity (1995–2003). Selected events consist of both depletion and increase of the F2 region electron density. For European higher middle and middle latitude the F1 region response to geomagnetic storm was found to be negative (decrease of electron density) independent on the storm effect on the F2 region. For lower middle latitude the F1 response is weaker and less regular. Results of the analysis also show that the maximum of the storm effect may sometimes occur below the height of the maximum of electron density (NmF2).  相似文献   

5.
Neural network (NN) models for the low latitude and the polar ionosphere from the D- to the F-region were developed which are based on incoherent scatter radar data from Arecibo and EISCAT Svalbard, respectively. The various geophysical input parameters defining the NN are not only the ones that represent the time one wants to predict, but also the geophysical conditions prior to the time of the prediction. The optimum length of these preceding periods are derived for the two models are different, but a period of 60 days is a compromise acceptable for both latitudes. Furthermore from the Arecibo data time constants of electron density decay after sundown are derived which – arguably – are also relevant elsewhere, including the polar latitudes. Whereas at all altitudes the electron densities decay exponentially after sundown, below 300 km there is an additional variation with solar zenith angle.  相似文献   

6.
在航天器羽烟一次性抛出和呈球状近似情况下,模拟了电离层E层NO羽烟与周围大气压力平衡时的最大亮度及其随时间的变化.在110km抛出的5molNO羽烟可使它获得瞬时夜间中等偏强极光那样的亮度,在140km抛出的同样数量的NO羽烟亮度却急剧地减弱.还模拟了白天夜间温度为1000K的NO2羽烟在190km和250km两个高度、50mol和500mol两种抛出总量所造成的局部大气温度短时间内的下降.在F层下部,夜间较大抛出量所造成的冷却效应是显著的.  相似文献   

7.
Mars Global Reference Atmospheric Model (Mars-GRAM 2001) is an engineering-level Mars atmosphere model widely used for many Mars mission applications. From 0 to 80 km, it is based on NASA Ames Mars General Circulation Model (MGCM), while above 80 km it is based on University of Michigan Mars Thermospheric General Circulation Model. Mars-GRAM 2001 and MGCM use surface topography from Mars Global Surveyor Mars Orbiter Laser Altimeter (MOLA). Validation studies are described comparing Mars-GRAM with a global summary data set of Mars Global Surveyor Thermal Emission Spectrometer (TES) data. TES averages and standard deviations were assembled from binned TES data which covered surface to ∼40 km, over more than a full Mars year (February 1999–June 2001, just before start of a Mars global dust storm). TES data were binned in 10° × 10° latitude–longitude bins (36 longitude bins, centered at 5°–355°, by 18 latitude bins, centered at −85° to +85°), and 12 seasonal bins (based on 30° increments of Ls angle). Bin averages and standard deviations were assembled at 23 data levels (temperature at 21 pressure levels, plus surface temperature and surface pressure). Two time-of-day bins were used: local time near 2 or 14 h. Two dust optical depth bins were used: infrared optical depth, either less than or greater than 0.25 (which corresponds to visible optical depth less than or greater than about 0.5). For interests in aerocapture and precision entry and landing, comparisons focused on atmospheric density. TES densities versus height were computed from TES temperature versus pressure, using assumptions of perfect gas law and hydrostatics. Mars-GRAM validation studies used density ratio (TES/Mars-GRAM) evaluated at data bin center points in space and time. Observed average TES/Mars-GRAM density ratios were generally 1 ± 0.05, except at high altitudes (15–30 km, depending on season) and high latitudes (>45°N), or at most altitudes in the southern hemisphere at Ls  90° and 180°. Compared to TES averages for a given latitude and season, TES data had average density standard deviation about the mean of ∼2.5% for all data, or ∼1–4%, depending on time of day and dust optical depth. Average standard deviation of TES/Mars-GRAM density ratio was 8.9% for local time 2 h and 7.1% for local time 14 h. Thus standard deviation of observed TES/Mars-GRAM density ratio, evaluated at matching positions and times, is about three times the standard deviation of TES data about the TES mean value at a given position and season.  相似文献   

8.
强磁暴期间TIEGCM模式与CHAMP卫星热层大气密度的比较分析   总被引:2,自引:2,他引:0  
利用NCAR-TIEGCM模式计算了2003年11月20—21日强磁暴期间410km高度上的大气密度,并与CHAMP/STAR加速度计反演数据进行对比和分析. 结果表明,模式结果能够准确反映磁暴期间大气密度的分布和变化情况,与实测结果在变化趋势和量级上具有较好的一致性,但在精细结构和数值大小上仍存在一定差异. 模式低估了磁暴期间大气密度的增幅,实测大气密度增幅高达250%~400%,而模式结果为100%~125%. 模式结果与实测数据的偏差在高纬地区高于低纬地区,日侧高于夜侧. 通过模式和实测数据的分析发现,磁暴期间大气密度扰动具有日夜侧和南北半球不对称性. 此外,模式能够准确反映磁暴期间大气密度扰动从高纬向低纬的传播以及大气密度对SYM-H指数响应的延迟特性.   相似文献   

9.
不同上边界条件下的极区电离层数值模拟   总被引:1,自引:0,他引:1  
利用一维自洽的极区电离层模型,研究了沿磁力线方向不同电离层-磁层耦合条件下极区电离层的响应.此模型在110-610km的电离层空间区域内,综合求解描述极区电离层的连续性方程、动量方程和能量方程,以得到电离层数值解.研究发现,上边界条件在200 km以上的高度能显著地影响电离层参量的形态.较高的O+上行速度对应较低的F层峰值和较高的电子温度.不同边界O+上行速度对应的温度高度剖面完全不同.200km以上电子温度高度剖面不但由来自磁层的热流通量所控制,同时还受到场向O+速度的影响.对利用电离层模型研究电离层内部物理过程提出了建议.   相似文献   

10.
The absorption anomaly of Lyman-alpha radiation in satellite occultation experiments is known as the fact that extinction above 100 km is much stronger than absorption by atmospheric O2 alone would explain. Additional absorption by NO or H2O has been suggested but none has been clearly identified so far. The additional absorption occurs predominantly in middle and high latitudes of the winter hemisphere, but has also been found in equatorial latitudes. Recent measurements of NO would explain the Lyman-alpha absorption anomaly. The high densities of the additional Lyman-alpha absorber at lower latitudes could be explained by transport processes through global circulation systems of the higher thermosphere. Structural variations of the neutral gas derived from occultation measurements seem to indicate that thermospheric low pressure systems in mid latitudes modulate the transport of tracer constituents and heat energy from higher latitudes to the equator.  相似文献   

11.
Stratospheric electrical conductivity measurements have been made from high altitude research balloons at various locations around the world for more than 40 years. In the stratosphere, conductivity changes may indicate changes in aerosol or water vapor content. In this paper, we will compare the short term variation amplitude in data taken at several latitudes from equatorial to polar cap. Short term variations that occur on time scales of weeks to months (105–107 s) can be attributed to Forbush decreases, geomagnetic storms, aerosol injections by volcanos and forest fires, etc. Variations with time scales of minutes to days (103–105 s) can have amplitudes of a factor of ∼2 or more at high magnetic latitude. The variance at equatorial latitude is much smaller. The sources of these fluctuations and the latitude gradient remain unknown. Variations of all origins completely obscure any long-term climatic trend in the data taken in the previous four decades at both mid and high latitude.  相似文献   

12.
Continued analysis of Pioneer Venus imaging and polarimetry data indicates that the average cloud-top level circulation is mainly zonal (east to west) with a small meridional component. Presence of planetary scale waves and a possible sun-related component are evident in the data. If the tracked features refer to the same vertical level, then some variability of the circulation would have to be present to account for the Pioneer and Mariner 10 cloud-tracking results. However, the implied balanced flow from the observed thermal structure analysis strongly suggests that at least some of the variations in these observations is due to apparent cloud-top variations and that the circulation itself is relatively stable.Direct cyclostrophic calculations based on the observed thermal structure of the atmosphere yield a balanced zonal circulation with distinct mid-latitude jets (peak velocities about 110–120 ms?1) located between 50 and 40 mb in each hemisphere of the planet near 45° latitude. The calculations which extend to about 40 km altitude from 80 km above the surface agree well with the observed entry probe zonal components and indicate breakdown of the balance condition near the upper and lower boundaries at low latitudes.The balanced flow results are consistent with the Mariner 10 and Pioneer cloud tracked estimates of the zonal circulation provided the effective altitude of the tracked features is slightly different at different observation periods. The features in the Pioneer Venus data would then lie on a sloping surface that extends from about 68 km (40 mb) at low latitudes to about 75 km (10 mb) in mid-latitudes. The polarization features would occur on a roughly parallel surface that is 1–2 km above the effective cloud-height surface, and Mariner 10 features would have effective altitudes somewhat lower than the Pioneer ultraviolet features. A slight asymmetry is evident in the balanced zonal circulation arising out of an asymmetry in the thermal field.Finally, the solenoids formed by intersecting isobaric and isosteric (constant specific volume) surfaces deduced from the Pioneer Venus radio occultation data show distinct evidence of a direct meridional circulation that may be important in sustaining the Venus atmospheric circulation.  相似文献   

13.
A database of electron temperature (Te) measurements comprising of most of the available satellite measurements in the topside ionosphere is used for studying the solar activity variations of the electron temperature Te at different latitudes, altitudes, local times and seasons. The Te data are grouped into three levels of solar activity (low, medium, high) at four altitude ranges, for day and night, and for equinox and solstices. We find that in general Te changes with solar activity are small and comparable in magnitude with seasonal changes but much smaller than the changes with altitude, latitude, and from day to night. In all cases, except at low altitude during daytime, Te increases with increasing solar activity. But this increase is not linear as assumed in most empirical Te models but requires at least a parabolic approximation. At 550 km during daytime negative as well as positive correlation is found with solar activity. Our global data base allows to quantify the latitude range and seasonal conditions for which these correlations occur. A negative correlation with solar activity is found in the invdip latitude range from 20 to 55 degrees during equinox and from 20 degrees onward during winter. In the low latitude (20 to −20 degrees invdip) F-region there is almost no change with solar activity during solstice and a positive correlation during equinox. A positive correlation is also observed during summer from 30 degrees onward.  相似文献   

14.
Orbital debris is known to pose a substantial threat to Earth-orbiting spacecraft at certain altitudes. For instance, the orbital debris flux near Sun-synchronous altitudes of 600–800 km is particularly high due in part to the 2007 Fengyun-1C anti-satellite test and the 2009 Iridium-Kosmos collision. At other altitudes, however, the orbital debris population is minimal and the primary impactor population is not man-made debris particles but naturally occurring meteoroids. While the spacecraft community has some awareness of the risk posed by debris, there is a common misconception that orbital debris impacts dominate the risk at all locations. In this paper, we present a damage-limited comparison between meteoroids and orbital debris near the Earth for a range of orbital altitude and inclination, using NASA’s latest models for each environment. Overall, orbital debris dominates the impact risk between altitudes of 600 and 1300 km, while meteoroids dominate below 270 km and above 4800 km.  相似文献   

15.
Radio occultation measurements of the temperature structure of the Venus atmosphere have been obtained during seven occultation “seasons” extending from December 1978 to December 1983. Approximately 123 vertical profiles of temperature from about 40 km to about 85 km altitudes have been derived. Since these measurements cover latitudes from both poles to the equator, they have shown the latitudinal dependence of thermal structure. There is a smooth transition from the troposphere to the mesosphere at latitudes below about 45°, with the tropopause at about 56 km. The troposphere then rises to about 62 km in the “collar cloud” region between about 60° and 80° latitude, where a strong temperature inversion (up to 30 K) is present. In the polar areas, 80°–90°, the mesosphere becomes isothermal and there is no inversion. This latitudinal behavior is related to the persistent circulation pattern, in which a predominantly zonal retrograde motion at latitudes below 45° gradually changes to a circumpolar vortex at the “collar cloud” latitudes. Indeed, the radio occultation data have been used in a cyclostrophic balance model to derive zonal winds in the Venus atmosphere, which showed a mid-latitude (50°–55°) jet with a speed of about 120–140 ms?1 at about 70 km altitude /1,2/. The observations obtained in 1983 and 1984 have shown that above the tropopause there is considerable temporal variability in the detailed thermal structure, suggesting that the persistent circulation pattern is subject to weather-like variability.  相似文献   

16.
The risks to aircrew health posed by prolonged exposure to low levels of ionizing radiation at aircraft altitudes have recently received renewed attention. Civil and military aircraft currently on the drawing board are expected to operate at higher altitudes (>12 km) and fly longer ranges than do existing aircraft, thereby exposing their crews to higher levels of ionizing radiation, for longer periods of time. We are currently carrying out dosimetric measurements of the ionizing radiation environment at approximately 20 km altitude using portable Si detectors aboard NASA's two ER-2 high altitude research aircraft. The instruments, Liulin-4J, have been extensively calibrated at several particle accelerators. With these instruments, we can measure not only absorbed dose, but also variation of the absorbed dose as a function of time. We report radiation dose measurements as function of time, altitude, and latitude for several ER-2 missions.  相似文献   

17.
We have solved the Maxwellian equations of electromagnetic waves which oscillate within the cavity formed in the lower ionosphere of Mars between 0 and 70?km. The electrical conductivity and Schumann Resonance (SR) frequencies are calculated in the lower ionosphere of Mars, in the presence of a major dust storm that occurred in Martian Year (MY) 25 at low latitude region (25°–35°S). It is found that the atmospheric conductivity reduced by one to two orders of magnitude in the presence of a dust storm. It represents a small dust layer at about 25–30?km altitudes where lightning can occur. We also found that the SR frequencies peak at?~18?km with values 19.9, 34.5 and 48.8?Hz for the modes l?=?1, 2 and 3, respectively, in the non-homogeneous medium. Our results indicate that practical or measurable values of SR are dependent on the altitudes.  相似文献   

18.
This review presents numerous recent examples of interesting variations in the composition and intensity of the hot ion flux (10 eV - 15 keV/e) provided by the AUREOL-3 satellite as a function of latitude and local time during periods of magnetic activity. In particular, these results reveal that although H+ is the most abundant ion during magnetically quiet periods, the ion composition of hot plasma at ionospheric altitudes is quite variable, and depends strongly on magnetic activity; results obtained during main and recovery phases of several magnetic storms demonstrate clearly (below 15 keV/Q) the great importance of the low altitude ionospheric source (H+, O+, and to a lesser degree He+) particularly at low latitudes (L ~ 3 - 4) where the flux of O+ ions becomes very large and even dominates. The results of the AUREOL-3 ion spectrometers establish the fact that upflowing suprathermal ionospheric ions (Ei < 100 eV/e) appear over large regions of the auroral ionosphere, the polar caps, and the polar cusp, as well as in or at the boundary of the plasmasphere during magnetospheric substorms or magnetic storms, and may consequently contribute significantly to the plasma sheet and to the inner storm time ring current. Most of the properties of the storm time ring current found by the GEOS, SCATHA, and ISEE satellites apply to lower altitudes, although the role of the ionospheric and/or plasmaspheric source appears accentuated.  相似文献   

19.
After the major modernization of the data acquisition electronics of the particle detectors operated at Aragats Space Environmental Center (ASEC) calculations of the barometric coefficients of all the monitors were performed in the beginning of the 24th solar activity cycle. The barometric coefficients of particle detectors located at altitudes of 1000 m, 2000 m and 3200 m a.s.l. measuring various secondary cosmic ray fluxes were compared with theoretical expectations and monitors operated on different longitudes and latitudes. The barometric coefficients were also calculated for the several neutron monitors of recently established Eurasian database (NMDB) and SEVAN particle detector networks. The latitude and altitude dependencies of the barometric coefficients were investigated, as well as the dependence of coefficients on energy of the primary particles.  相似文献   

20.
This paper reports the global response of the mid high and low latitude ionosphere in four longitudinal sectors to two moderate geomagnetic storms that occurred during 2007 (the more intense storms occurred that year). The results obtained during these storms show that the ionospheric effects in general are not moderate in magnitude, showing an important degree of complexity as during intense storms. The outstanding features produced during the storms are significant positive storm effects at mid-high latitudes during the main phase/first part of the recovery, positive effects after the onset of the storm followed by negatives effects at middle latitudes and delayed positive effects during the night-time hours in the trough of the equatorial anomaly (“dusk” effect). Possible physical mechanisms for controlling the morphology of the ionosphere during these events are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号