首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
涡轮盘枞树形榫槽加工是涡轮盘加工的关键工序。完成榫槽加工的关键是榫槽的拉削工序,决定拉削工序的主要因素有机床、拉刀和夹具。拉刀的设计和制造质量是榫槽的拉削工序中最活跃的因素之一,也是拉削榫槽时加工涡轮盘榫槽厂家主要考虑的因素。  相似文献   

2.
针对现代高性能、高精度涡轮盘榫槽的加工需要,在拉刀设计上改变了传统的设计方法,采用先进的、科学的拉削方式,取得了成熟的经验,进一步发展了拉刀设计技术。本文从拉削原理入手,总结出现代涡轮盘枞树形榫槽拉刀的设计方法,可供设计人员借鉴、参考。  相似文献   

3.
关于如何提高涡轮盘榫槽精拉刀的使用寿命,过去往往偏重于探讨刃磨方法,增加刃磨次数,而忽略了提高拉刀耐用度(刀磨一次拉削的件数)的研究,因此效果总是不显著。据苏联资料规定,榫槽拉刀每刃磨一次只能拉削十个盘。这个框框能不能打破呢?实践证明这个数字并不是绝对的。只不过由于拉刀拉削超过十个盘,刀刃逐渐磨损变钝,拉制的榫槽光  相似文献   

4.
涡轮盘榫槽和涡轮叶片榫头的加工,大多数使用国产液压拉床。其主液压系统均比较简单(见图1),采用电磁换向阀使前后油路接通,进行拉削和返回。这样的液压系统,对于拉削难加工材料的盘和叶片,其刚性不够。在拉削时,由于切削齿数和齿升量的变化,引起拉削力的变化,结果造成拉床产生振动和噪音,被加工的齿型面产生波纹,光洁度降低。  相似文献   

5.
FGH95粉末高温合金作为一种高强度、高耐热性的镍基高温合金,在先进航空发动机的涡轮盘中应用日趋普遍,而涡轮盘的榫槽拉削是涡轮盘加工的关键工序。根据FGH95粉末高温合金的特点,从力学分析入手,强调FGH95粉末高温合金涡轮盘拉削过程控制的重要性,并提出了对FGH95粉末高温合金拉削过程中出现问题的解决措施。  相似文献   

6.
新机工装生产中,我车间承担了高精度榫齿拉刀的制造任务。这种拉刀用于拉削涡轴发动机涡轮盘叶片榫槽,涡轮盘材料为GH33A。拉刀材料为M42,型面部分见图1,拉刀除具有  相似文献   

7.
以FGH96粉末高温合金材料涡轮盘为载体,优化零件加工工艺路线,改进传统的工艺加工方案,通过切削试验,优选采用新型的刀具材料,研究确定粉末高温合金涡轮盘榫槽拉削加工工艺,分析摸索零件加工变形的规律,对有效控制减少零件加工变形等方面进行了较详细地论述。  相似文献   

8.
介绍了烟机涡轮盘车削,钻孔,拉榫槽 工艺,在主要工装不配备的条件下,利用万能办法,改制刀具等强度,变截面涡轮盘的机加任务。  相似文献   

9.
为有效解决涡轮盘榫槽拉刀设计周期长和效率低的问题,提出基于产品模型的榫槽拉刀快速设计方法。该方法通过特征识别和参数提取获得涡轮盘榫槽型面的加工特征参数,建立适应不同齿数的涡轮盘榫槽拉刀通用模板,通过参数关联将提取出的加工参数信息转化为拉刀设计信息,并驱动涡轮盘榫槽拉刀模型模板生成相应的榫槽拉刀。上述研究成果缩短了榫槽拉刀的设计周期,提高了榫槽拉刀的设计效率,并实现了涡轮盘设计部门、工艺设计部门、榫槽拉刀工艺装备部门之间基于三维产品模型的有效协作。  相似文献   

10.
本文介绍了燃气轮机涡轮叶片枞树形榫槽以拉削代替铣削工艺的研究工作,着重论述组合拉刀设计与改进。  相似文献   

11.
航空发动机轮盘榫槽拉削,长期存在着效率低、拉削质量不稳定,刀具磨损快的问题。为此,几年来人们都把注意力集中在如何提高刀具材料的切削性能,研制了很多新品种刀具,耗费了很多材料和资金,但是收效甚微。摆在我们面前的任务是寻找别的途径来解决盘榫槽的拉削问题。随着高速切削理论的发展,我们想到了在拉削中能否应用。大家知道,拉削工艺参数走刀量s和切削深度t改变都不能很大,而唯一拉削速度这一参数可较大的改变。为此,我们在轮盘榫槽拉削中进行了高速拉削的尝试。一、实现高速拉削的可能性  相似文献   

12.
GH761是我国自行研制的涡轮盘用新型高温合金 ,具有卓越的物理机械性能 ,但切削加工性较差。在GH761拉削加工中 ,拉刀磨损直接影响着表面质量。刀具的磨损通常用后刀面磨损值VB表示 ,在薄切屑低速拉削时 ,VB值变化极其缓慢。在试验中 ,60mm长的工件连续拉削 2 4 0s(相当于拉削五六个涡轮盘榫槽的时间 ) ,才形成比较均匀的后刀面磨损带 ,但此时拉刀却已磨损得不能使用。据观察 ,此时拉刀钝圆半径rn 有相当明显的增长 ,rn 值的变化反映了拉刀磨损的程度 ,同时也是影响拉削表面质量的主要因素。我们用模拟拉削的方式做了工艺试…  相似文献   

13.
一、概况铲背拉刀与普通拉刀的主要区别是铲背拉刀的型面均要铲磨后角,以确保被拉削型面的精度和光洁度。它适于精拉各种精密、复杂型面,也可用来粗拉型面,如拉削涡轮盘枞树形榫槽、压气机盘燕尾形榫槽和各种叶片榫头型面等。过去铲磨拉刀型面后角,是在平面磨床或刃具磨床上,用锥度导磁磨座或薄的锥度垫片垫在拉刀的底面或侧面下,使拉刀待铲磨的后  相似文献   

14.
本文系作者吸取西欧国家拉削涡轮叶片榫齿的先进经验,结合我国现有设备、工艺技术水平等情况自行设计的一套叶片榫齿组合拉刀,在国产四十吨卧式拉床上拉削涡轮叶片枞树形榫齿的情况。这对各发动机厂在改进涡轮叶片榫齿制造工艺、利用现有的拉床以拉代铣方面可能是个参考。  相似文献   

15.
在涡轮盘和压缩机盘拉刀的设计中,计算极其繁琐。如涡轮盘枞树形拉刀的计算包括:精拉刀的齿形滚棒尺寸;渐切法粗拉齿形刀的型面及各处圆弧型面的抬高修正;渐切法齿型倒角段的滚棒计算等,计算量很大。某些计算不仅繁,而且还较难。如燕尾形的压缩机盘拉刀设计计算中,由于榫槽在圆锥体盘中是一般空间位置,所以,计算榫槽的最大拉削深度要重复数次,用普通小型电子计算器要耗费较长  相似文献   

16.
在航空发动机中,用于连接涡轮盘和叶片的榫槽/榫头结构加工精度、表面质量要求极高,现有加工技术还不能实现涡轮盘榫槽结构的低成本、高效、高质量加工。电解线切割具有加工精度高、加工表面质量好、加工灵活性强等特点,对涡轮盘榫槽结构的低成本加工具有原理性优势。针对管电极内喷液电解切割时,切缝侧壁表面粗糙度不均匀问题,提出了浸没式管电极内喷液电解切割加工方法。在较为稳定、均匀的外部流场和快速流动的加工间隙内部流场共同作用下,实现了大厚度难加工材料的高效高质量加工。结果表明,相比于管电极内喷液电解切割,浸没式管电极内喷液电解切割加工出的切缝侧壁表面粗糙度比较均匀,整体加工质量较好。优选出内喷液压力,以4.5μm/s的进给速度在20 mm厚的高温合金GH4169工件上加工出表面粗糙度为Ra 1.247μm的涡轮盘榫槽结构。  相似文献   

17.
拉刀设计中,拉刀前后角、齿升量、齿距、拉刀结构、拉削余量的去除方式及拉刀材料等的选取对被拉零件的精度和表面质量有直接的影响。针对诸多问题,通过成套设计在枞树型拉刀设计上的应用,从源头上解决了拉刀制造、拉刀配套、拉削效率低下等问题,提高了发动机盘类榫槽和叶片榫头的拉削效率和质量。  相似文献   

18.
涡轮叶片榫齿拉削涡轮叶片榫齿拉削是在罗·罗公司PC02车间进行。共有32台立式拉床,型号为XS-3066A,它是Weatherley oilGEAR limlted公司生产的。此拉床是六十年代产品。拉削速度为低速,行程66时,拉力在10吨左右。滑枕靠矩形导轨上下运动,油缸安装在床身下方,活塞杆受拉。为了增加拉削过程的刚性,在拉  相似文献   

19.
通过对CFM56-3涡扇发动机风扇增压级鼓筒盘结构的分析,设计了鼓筒盘1~3级榫槽拉削时所用涨胎式夹具的结构,并选用了填充介质,该夹具工作部件涨环材料的选用、涨环壁厚的设计与传统刚性件拉削夹具有本质的区别。  相似文献   

20.
由于拉刀在拉削过程中,切屑不可能从拉刀的齿间槽排出,而是要全部容纳在齿槽中,随着拉刀移动,将拉屑带出已加工表面,因此采用偏置前角拉削,有效提高拉刀强度,解决该特型榫槽拉屑排除问题,对容屑槽的设计显得格外重要。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号