首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 825 毫秒
1.
基于相干结构的大涡模拟壁面模型   总被引:1,自引:0,他引:1  
首先对湍流边界层近壁区相干结构群进行研究,根据共振三波理论使用沿流向周期性发展的多个三维波构造其初始结构,通过直接数值模拟得到该相干结构群的演化特性.在此基础上,提出了基于近壁区相干结构流动参数的新型大涡模拟壁面模型.确定了此壁面模型与主流大涡模拟衔接的原理方案.计算结果表明:该壁面模型在减少计算量的同时,能够为主流区大涡模拟提供重要的壁面大尺度结构信息,使计算取得准确的结果,实现了壁面模型的基本功能.   相似文献   

2.
利用流动稳定性理论中一般共振三波的概念对4种定常逆压梯度以及两种变逆压梯度湍流边界层的相干结构进行研究.其中2种变逆压梯度分别为压力梯度由小变大和由大变小,变化的终了具有相同的压力梯度.通过计算得出逆压梯度能够激励相干结构的生成和发展,而且逆压梯度越大作用越强.在变压力梯度流动中,压力梯度由大变小的情况对相干结构的激励最强.此外,逆压梯度使相干结构的流向尺度变小,而展向间距基本在100个粘性长度左右,这些变化趋势与实验以及直接数值模拟结果一致.  相似文献   

3.
近壁区理论耗散率模型的改进   总被引:1,自引:1,他引:0  
提出了在边界层的近壁区,采用共振三波的理论模型描述湍流边界层相干结构,由此解决了对称三维波理论模型不能处理三阶相关量的问题,根据新的理论模型对ε方程逐项进行计算和分析.与原理论模型计算结果相比,本文理论结果与直接数值模拟(DNS)符合更好.  相似文献   

4.
在湍流边界层的近壁区,采用对称共振三波的理论模型描述相干结构,根据理论模型对Reynolds应力输运方程逐项进行计算和分析,结果与直接数值模拟符合很好.这不仅在理论上有益于对湍流物理机制的了解,而且展现了一种可能性,即根据相干结构的理论知识来改造湍流模型,使之具有更清晰的物理内涵以提高近壁区的预估精度.  相似文献   

5.
引入展向调制的二维人工扰动激发平板边界层转捩,利用水槽氢气泡流动显示技术观察到转捩边界层中典型三维扰动的产生和发展,包括Λ结构、发卡涡以及发卡涡演化生成环状涡的过程.实验结果显示出环状涡和尖峰结构的关系,直接证实了尖峰结构的产生机理.在流动紊乱化初始阶段发现常出现在湍流边界层中的暗斑结构,结果表明与暗斑相伴随的局部高剪切层不稳定可能是流动紊乱化的重要原因.  相似文献   

6.
为了研究高雷诺数下圆柱绕流边界层的转捩现象和圆柱尾迹近壁区的流动特征,首先通过在典型雷诺数下采用Transition SST四方程转捩模型模拟圆柱绕流得到的结果与实验结果及采用SST k-ω两方程湍流模型模拟结果的对比分析,验证了Transition SST模型在模拟高雷诺数下圆柱绕流的优越性,并较为准确地预测出了圆柱绕流边界层的转捩现象及尾迹近壁区的流动特征。然后分别对亚临界区、临界区、超临界区和过临界区的圆柱绕流问题进行了数值模拟,分析了不同雷诺数下圆柱绕流的流场结构及圆柱表面压力系数、摩擦力系数的变化规律,研究了圆柱绕流近壁区的流动特征、边界层转捩的流动机理、转捩位置及其随雷诺数的变化规律。结果表明,亚临界区二维圆柱绕流边界层发生层流分离,无分离泡和转捩现象;临界区和超临界区二维圆柱绕流边界层先产生了分离泡现象,之后流动发生了转捩并在转捩后发生湍流分离;过临界区二维圆柱绕流边界层流动在转捩之后发生湍流分离,无分离泡现象;在临界区、超临界区和过临界区,二维圆柱绕流边界层转捩位置随雷诺数增大向前驻点移动。  相似文献   

7.
近壁区湍能耗散率输运方程的理论模型   总被引:3,自引:1,他引:3  
提出在湍流边界层的近壁区采用三维不稳定波来描述湍流扰动速度,然后根据理论模型对湍能耗散率的生成、粘性破坏以及扩散等特性进行了系统定量的计算和分析.理论计算结果与直接数值模拟结果符合较好,特别是在y<10的区域中明显优于传统湍流模型的计算结果.这不仅在理论上有益于对湍流物理机制的了解,而且可能为湍流模型计算开辟一条新的途径.  相似文献   

8.
对低磁雷诺数近似下流向磁场作用的二维磁流体槽道湍流进行了直接数值模拟(DNS,Direct Numerical Simulation),给出了 Re=10 000时不同磁相互作用数下二维磁流体槽道湍流的近壁速度分布、湍流脉动速度均方根、雷诺应力等统计量的变化,并与中性流体二维槽道湍流进行了比较.结果表明:流向磁场作用会导致对数区上移;雷诺应力最大值随磁相互作用数呈线性变化;随着磁相互作用数的增大,下壁面平均涡量的时间演化由拟周期性向周期性转变,且脉动周期逐渐增大并当流动层流化后下壁面平均涡量成为常值.   相似文献   

9.
低雷诺数下翼型前缘流动分离机制的研究   总被引:9,自引:0,他引:9  
采用高精度有限差分格式,对来流雷诺数为1.0×104,攻角为3°的二维翼型流动进行了直接数值模拟,研究了低雷诺数下翼型前缘流动的分离机制,描述了分离涡系的相互作用规律.计算结果表明:前缘椭圆弧靠近叶身位置存在吸力峰,流动在吸力峰内强逆压梯度的作用下发生分离;翼型上表面形成了包含驻留涡、脱落涡和二次涡的涡系结构,其尺度随时间不断变化,具有强烈的非定常性;表面压力分布曲线可以较好的描述翼型边界层流动.   相似文献   

10.
大涡模拟的一个重要发展方向是处理工程流动问题,但高雷诺数下近壁湍流边界层对计算网格的过高要求成为制约其应用的主要瓶颈;要减少计算量,构建合理且能够正确反映近壁湍流动力学特性的壁面模型是一条有效途径.在此背景下,构造了一种计算中便于实现的基于共振三波的壁面模型.通过对充分发展槽道湍流算例的研究,完成了对该模型构造方法、方案的论证和验证计算.结果表明使用壁面模型后,在减少计算量的同时,定性和定量的结果均较为合理,能够得到重要的瞬态特征结构和正确的一阶、二阶统计量,从而部分验证了该方法的有效性.  相似文献   

11.
定常压力梯度边界层相干结构的直接数值模拟   总被引:1,自引:0,他引:1  
根据流动稳定性理论,将不稳定波的一个周期作为相干结构的初值,采用直接数值模拟方法对有压力梯度湍流边界层中相干结构的演化进行了研究,得出其各种特性的变化与实验观测到的结果一致.  相似文献   

12.
沟槽面湍流减阻研究综述   总被引:21,自引:0,他引:21  
对近20年来沟槽面湍流边界层特性、湍流拟序结构、湍流减阻及其机理的研究进展进行了综述.内容涉及沟槽面平板、旋成体、机翼等在压、跨、超音速流动情况下的实验研究成果;压力梯度、攻角、侧滑角等的影响;湍流猝发特性、紊动特性、近壁区带条结构的特征及减阻机理等方面的工作.为更有效地减少表面摩阻,必须深入开展对沟槽面湍流边界层特性、湍流拟序结构及湍流减阻机理等方面的研究.   相似文献   

13.
利用数值模拟和风洞实验相结合的方法,研究了闭式流动腔体的流动特征及其设置圆柱控制杆后腔体内声压级(SPL, Sound Pressure Level)和压力分布的变化.数值模拟求解三维N-S方程,采用AUSM+计算格式,湍流模型采用Wilcox k-ω模型.实验在0.6 m×0.6 m超音速风洞中进行,在腔体底部布置了40个常规静压测量点和15个动态测压点.研究表明,在外流为超音速流时,闭式流动的腔体底部压力变化梯度较大,腔体底部和后缘的测压点的SPL值和频率关系曲线中没有明显的SPL峰值.实施控制后,腔体底部的压力变化梯度减缓,在腔体后缘分离区内的测压点SPL值降低,而前缘分离区内的测压点SPL值增加.   相似文献   

14.
复杂薄壁零件板多级充液成形及过程数值模拟   总被引:9,自引:0,他引:9  
板充液成形已被证明是制造复杂零件一种有效的方法.采用板多级充液成形方法对难成形复杂薄壁结构的飞行器零件进行了研究,利用有限元数值模拟的方法,分析了预成形凸模形状、预成形深度,以及液室压力等关键工艺参数对成形的影响.对成形中出现的诸如破裂、起皱等失效形式进行了探讨,给出了终成形时实现成功成形的最高液室压力区域范围.提出了控制成形质量的措施,优化了工艺参数,并根据数值模拟的结果进行了试验验证.结果表明,模拟结果和试验结果达到了较好的一致.   相似文献   

15.
使用GAO-YONG湍流方程组对扩压器流动的计算   总被引:3,自引:0,他引:3  
采用基于同位网格的SIMPLE方法求解GAO-YONG不可压湍流方程组,对二维扩压器流动进行了数值模拟.通过界面速度动量插值法解决了压力锯齿波问题,并且采用了正交贴体网格和二阶QUICK格式离散对流项以提高计算精度.与实验结果以及BL(Baldw-Lomax)模型计算结果的比较表明,不需要任何经验系数及壁面函数的GAO-YONG不可压湍流模型方程组能够对有压力梯度的湍流流动做出很好的预测.计算发现,在机械能方程中引入平均流压力梯度的作用,对GAO-YONG湍流方程组正确模拟逆压力梯度流动起到了关键作用.   相似文献   

16.
首先讨论了磁流波传播的线性特征,然后构造了球坐标中-自治的非等温,非均匀等离子体初态,应用二维时变可压缩磁流体动力学模拟,数值研究了色球层底部压力脉冲所引起扰动的全球传播过程,结果表明,在极区,压力脉冲导致的扰动传播可以区分成两类不同模式的波动,快磁声波与慢磁声波,而在赤道附近,传播扰动是快模磁声波,在源区附近还存在一非传播的扰动,模拟结果的特征有助于解释SOHO/EIT观测到的波动事件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号