首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Current knowledge of the temperature structure of the atmosphere of Venus is briefly summarized. The principal features to be explained are the high surface temperature, the small horizontal temperature contrasts near the cloud tops in the presence of strong apparent motions, and the low value of the exospheric temperature. In order to understand the role of radiative and dynamical processes in maintaining the thermal balance of the atmosphere, a great deal of additional data on the global temperature structure, solar and thermal radiation fields, structure and optical properties of the clouds, and circulation of the atmosphere are needed. The ability of the Pioneer Venus Orbiter and Multiprobe Missions to provide these data is indicated.  相似文献   

2.
The near absence of noble gases on earth, other than those of radioactive origin, indicates that the earth was formed by the accumulation of planetesimals; this process systematically excluded all constituents that did not enter into the solid phase. The atmosphere and the ocean with many of its dissolved salts have arisen from gases emitted from the earth's interior, a process that continues today. The oxygen in the earth's atmosphere plus a greater quantity that has been removed from the atmosphere to oxidize geologic materials, has arisen mainly from a small excess of photosynthesis over decay of organic material. The atmospheres of Mars and Venus have probably arisen in a manner similar to the atmosphere on earth, by emission from the planetary interiors. However, they have not received any oxygen from photosynthesis and so are nearly oxygen free. Mars has very little water in its atmosphere, and this can be explained by its lower than freezing average surface temperature. Venus also has very little water, and this requires an ad hoc explanation; one possibility is that Venus was formed from much drier planetesimals than was the earth. Mercury and the moon are virtually without atmospheres. Although some gases may be emitted from their interiors, they are presumably rapidly lost by escape. Whatever atmosphere they possess is probably due to the neutralized solar wind that impinges upon them. The outer planets retained volatiles, including hydrogen and helium, to a much greater extent than did the terrestrial planets.  相似文献   

3.
Although in recent years much has been learned about the atmospheric composition and structure of Venus, there are many key questions which remain unanswered. The Pioneer Venus set of experiments is designed to provide information both individually and collectively to help understand and explain first of all the present state of the atmosphere (the composition and distribution in both the lower and upper parts, the state property profiles, the cloud compositions, the role of phase in the thermal structure, the planet's surface and interior composition, the high surface temperature, the stability of CO2, the ionosphere — its chemistry and thermal structure, the existence of superrotation, the response of the upper atmosphere to changes in solar EUV and the solar wind) and secondly the origin and evolution of the atmosphere. This paper discusses these questions and the degree to which the Pioneer Venus instruments will respond to them.  相似文献   

4.
The current state of knowledge of the chemistry, dynamics and energetics of the upper atmosphere and ionosphere of Venus is reviewed together with the nature of the solar wind-Venus interaction. Because of the weak, though perhaps not negligible, intrinsic magnetic field of Venus, the mutual effects between these regions are probably strong and unique in the solar system. The ability of the Pioneer Venus Bus and Orbiter experiments to provide the required data to answer the questions outstanding is discussed in detail.  相似文献   

5.
Clouds and Hazes of Venus   总被引:1,自引:0,他引:1  
More than three decades have passed since the publication of the last review of the Venus clouds and hazes. The paper published in 1983 in the Venus book summarized the discoveries and findings of the US Pioneer Venus and a series of Soviet Venera spacecraft (Esposito et al. in Venus, p. 484, 1983). Due to the emphasis on in-situ investigations from descent probes, those missions established the basic features of the Venus cloud system, its vertical structure, composition and microphysical properties. Since then, significant progress in understanding of the Venus clouds has been achieved due to exploitation of new observation techniques onboard Galileo and Messenger flyby spacecraft and Venus Express and Akatsuki orbiters. They included detailed investigation of the mesospheric hazes in solar and stellar occultation geometry applied in the broad spectral range from UV to thermal IR. Imaging spectroscopy in the near-IR transparency “windows” on the night side opened a new and very effective way of sounding the deep atmosphere. This technique together with near-simultaneous UV imaging enabled comprehensive study of the cloud morphology from the cloud top to its deep layers. Venus Express operated from April 2006 until December 2014 and provided a continuous data set characterizing Venus clouds and hazes over a time span of almost 14 Venus years thus enabling a detailed study of temporal and spatial variability. The polar orbit of Venus Express allowed complete latitudinal coverage. These studies are being complemented by JAXA Akatsuki orbiter that began observations in May 2016. This paper reviews the current status of our knowledge of the Venus cloud system focusing mainly on the results acquired after the Venera, Pioneer Venus and Vega missions.  相似文献   

6.
This is a review of current knowledge about Earth’s nearest planetary neighbour and near twin, Venus. Such knowledge has recently been extended by the European Venus Express and the Japanese Akatsuki spacecraft in orbit around the planet; these missions and their achievements are concisely described in the first part of the review, along with a summary of previous Venus observations. The scientific discussions which follow are divided into three main sections: on the surface and interior; the atmosphere and climate; and the thermosphere, exosphere and magnetosphere. These reports are intended to provide an overview for the general reader, and also an introduction to the more detailed topical surveys in the following articles in this issue, where full references to original material may be found.  相似文献   

7.
No two rocky bodies offer a better laboratory for exploring the conditions controlling interior dynamics than Venus and Earth. Their similarities in size, density, distance from the sun, and young surfaces would suggest comparable interior dynamics. Although the two planets exhibit some of the same processes, Venus lacks Earth’s dominant process for losing heat and cycling volatiles between the interior and the surface and atmosphere: plate tectonics. One commonality is the size and number of mantle plume features which are inferred to be active today and arise at the core mantle boundary. Such mantle plumes require heat loss from the core, yet Venus lacks a measurable interior dynamo. There is evidence for plume-induced subduction on Venus, but no apparent mosaic of moving plates. Absent plate tectonics, one essential question for interior dynamics is how did Venus obtain its young resurfacing age? Via catastrophic or equilibrium processes? Related questions are how does it lose heat via past periods of plate tectonics, has it always had a stagnant lid, or might it have an entirely different mode of heat loss? Although there has been no mission dedicated to surface and interior processes since the Magellan mission in 1990, near infrared surface emissivity data that provides information on the iron content of the surface mineralogy was obtained fortuitously from Venus Express. These data imply both the presence of continental-like crust, and thus formation in the presence of water, and recent volcanism at mantle hotspots. In addition, the study of interior dynamics for both Earth and exoplanets has led to new insights on the conditions required to initiate subduction and develop plate tectonics, including the possible role of high temperature lithosphere, and a renewed drive to reveal why Venus and Earth differ. Here we review current data that constrains the interior dynamics of Venus, new insights into its interior dynamics, and the data needed to resolve key questions.  相似文献   

8.
From the discovery that Venus has an atmosphere during the 1761 transit by M. Lomonosov to the current exploration of the planet by the Akatsuki orbiter, we continue to learn about the planet’s extreme climate and weather. This chapter attempts to provide a comprehensive but by no means exhaustive review of the results of the atmospheric thermal structure and radiative balance since the earlier works published in Venus and Venus II books from recent spacecraft and Earth based investigations and summarizes the gaps in our current knowledge. There have been no in-situ measurements of the deep Venus atmosphere since the flights of the two VeGa balloons and landers in 1985 (Sagdeev et al., Science 231:1411–1414, 1986). Thus, most of the new information about the atmospheric thermal structure has come from different remote sensing (Earth based and spacecraft) techniques using occultations (solar infrared, stellar ultraviolet and orbiter radio occultations), spectroscopy and microwave, short wave and thermal infrared emissions. The results are restricted to altitudes higher than about 40 km, except for one investigation of the near surface static stability inferred by Meadows and Crisp (J. Geophys. Res. 101:4595–4622, 1996) from 1 \(\upmu\)m observations from Earth. Little information about the lower atmospheric structure is possible below about 40 km altitude from radio occultations due to large bending angles. The gaps in our knowledge include spectral albedo variations over time, vertical variation of the bulk composition of the atmosphere (mean molecular weight), the identity, properties and abundances of absorbers of incident solar radiation in the clouds. The causes of opacity variations in the nightside cloud cover and vertical gradients in the deep atmosphere bulk composition and its impact on static stability are also in need of critical studies. The knowledge gaps and questions about Venus and its atmosphere provide the incentive for obtaining the necessary measurements to understand the planet, which can provide some clues to learn about terrestrial exoplanets.  相似文献   

9.
The Galileo Probe Atmosphere Structure Instrument will make in-situ measurements of the temperature and pressure profiles of the atmosphere of Jupiter, starting at about 10-10 bar level, when the Probe enters the upper atmosphere at a velocity of 48 km s-1, and continuing through its parachute descent to the 16 bar level. The data should make possible a number of inferences relative to atmospheric and cloud physical processes, cloud location and internal state, and dynamics of the atmosphere. For example, atmospheric stability should be defined, from which the convective or stratified nature of the atmosphere at levels surveyed should be determined and characterized, as well as the presence of turbulence and/or gravity waves. Because this is a rare opportunity, sensors have been selected and evaluated with great care, making use of prior experience at Mars and Venus, but with an eye to special problems which could arise in the Jupiter environment. The temperature sensors are similar to those used on Pioneer Venus; pressure sensors are similar to those used in the Atmosphere Structure Experiment during descent of the Viking Landers (and by the Meteorology Experiment after landing on the surface); the accelerometers are a miniaturized version of the Viking accelerometers. The microprocessor controlled experiment electronics serve multiple functions, including the sequencing of experiment operation in three modes and performing some on-board data processing and data compression.  相似文献   

10.
Titan has the most significant atmosphere of any moon in the solar system, with a pressure at the surface larger than the Earth??s. It also has a significant ionosphere, which is usually immersed in Saturn??s magnetosphere. Occasionally it exits into Saturn??s magnetosheath. In this paper we review several recent advances in our understanding of Titan??s ionosphere, and present some comparisons with the other unmagnetized objects Mars and Venus. We present aspects of the ionospheric structure, chemistry, electrodynamic coupling and transport processes. We also review observations of ionospheric photoelectrons at Titan, Mars and Venus. Where appropriate, we mention the effects on ionospheric escape.  相似文献   

11.
Vignes  D.  Acuña  M.H.  Connerney  J.E.P.  Crider  D.H.  Rème  H.  Mazelle  C. 《Space Science Reviews》2004,111(1-2):223-231
We report observations of magnetic fields amplitude, which consist of a series of individual spikes in the Martian atmosphere. A minimum variance analysis shows that these spikes form twisted cylindrical filaments. These small diameter magnetic filaments are commonly called magnetic flux ropes. We examine the global characteristics of magnetic flux ropes, which are observed on 5% of the elliptical orbits of Mars Global Surveyor. Flux ropes are more often observed in Venus' atmosphere (70% of the orbits). In this paper we report some of the global characteristics of the flux ropes identified in the Martian atmosphere. No flux ropes are observed in the southern hemisphere of Mars. Most of them occur at high solar zenith angles, close to the terminator plane, and at high latitude with altitudes below 400 km. The orientation of the flux ropes appears random while in the case of Venus the orientation is more horizontal near the terminator for altitudes greater than 200 km. We have identified fewer flux ropes for SZA between 40 to 60 deg and for SZA lower than 20 deg, like in the case of Venus (Elphic and Russell, 1983b). Statistically, Mars' ionosphere with SZA range between 40circ to 60circ is less magnetized than near the subsolar point. As the Martian ionosphere is quite often magnetized by the magnetic components of the crustal field, this crustal magnetic field seems to inhibit the flux ropes formation in the southern hemisphere. However, some orbits without crustal magnetic field, called magnetic cavities, were observed without flux ropes. So the flux ropes formation process seems to be uppressed by another factor, like the solar wind dynamic pressure for Venus (Krymskii and Breus, 1988).  相似文献   

12.
We review here observations and models related to the chemical and thermal structures, airglow and auroral emissions and dynamics of the Venus thermosphere, and compare empirical models of the neutral densities based in large part on in situ measurements obtained by the Pioneer Venus spacecraft. Observations of the intensities of emissions are important as a diagnostic tool for understanding the chemical and physical processes taking place in the Venus thermosphere. Measurements, ground-based and from rockets, satellites, and spacecraft, and model predictions of atomic, molecular and ionic emissions, are presented and the most important sources are elucidated. Coronas of hot hydrogen and hot oxygen have been observed to surround the terrestrial planets. We discuss the observations of and production mechanisms for the extended exospheres and models for the escape of lighter species from the atmosphere. Over the last decade and a half, models have attempted to explain the unexpectedly cold temperatures in the Venus thermosphere; recently considerable progress has been made, although some controversies remain. We review the history of these models and discuss the heating and cooling mechanisms that are presently considered to be the most important in determining the thermal structure. Finally, we discuss major aspects of the circulation and dynamics of the thermosphere: the sub-solar to anti-solar circulation, superrotation, and turbulent processes.  相似文献   

13.
Our understanding of the upper atmosphere of unmagnetized bodies such as Mars, Venus and Titan has improved significantly in this decade. Recent observations by in situ and remote sensing instruments on board Mars Express, Venus Express and Cassini have revealed characteristics of the neutral upper atmospheres (exospheres) and of energetic neutral atoms (ENAs). The ENA environment in the vicinity of the bodies is by itself a significant study field, but ENAs are also used as a diagnostic tool for the exosphere and the interaction with the upstream plasmas. Synergy between theoretical and modeling work has also improved considerably. In this review, we summarize the recent progress of our understanding of the neutral environment in the vicinity of unmagnetized planets.  相似文献   

14.
Increased computer capacity has made it possible to model the global plasma and neutral dynamics near Venus, Mars and Saturn??s moon Titan. The plasma interactions at Venus, Mars, and Titan are similar because each possess a substantial atmosphere but lacks a global internally generated magnetic field. In this article three self-consistent plasma models are described: the magnetohydrodynamic (MHD) model, the hybrid model and the fully kinetic plasma model. Chamberlain and Monte Carlo models of the Martian exosphere are also described. In particular, we describe the pros and cons of each model approach. Results from simulations are presented to demonstrate the ability of the models to capture the known plasma and neutral dynamics near the three objects.  相似文献   

15.
With the possible exception of the lowest one or two scale heights, the dominant mode of circulation of Venus' atmosphere is a rapid, zonal, retrograde motion. Global albedo variations in the ultraviolet may reflect planetary scale waves propagating relative to the zonal winds. Other special phenomena such as cellular convection in the subsolar region and internal gravity waves generated in the interaction of the zonal circulation with the subsolar disturbance may also be revealed in ultraviolet imagery of the atmosphere. We discuss the contributions of experiments on the Orbiter and Entry Probes of Pioneer Venus toward unravelling the mystery of the planet's global circulation and the role played by waves, instabilities and convection therein.  相似文献   

16.
Some possible factors of climate changes and of long term climate evolution are discussed with regard of the three terrestrial planets, Earth, Venus and Mars. Two positive feedback mechanisms involving liquid water, i.e., the albedo mechanism and the greenhouse effect of water vapour, are described. These feedback mechanisms respond to small external forcings, such as resulting from solar or astronomical constants variability, which might thus result in large influences on climatic changes on Earth. On Venus, reactions of the atmosphere with surface minerals play an important role in the climate system, but the involved time scales are much larger. On Mars, climate is changing through variations of the polar axis inclination over time scales of ~105–106 years. Growing evidence also exists that a major climatic change happened on Mars some 3.5 to 3.8 Gigayears ago, leading to the disappearance of liquid water on the planet surface by eliminating most of the CO2 atmosphere greenhouse power. This change might be due to a large surge of the solar wind, or to atmospheric erosion by large bodies impacts. Indeed, except for their thermospheric temperature response, there is currently little evidence for an effect of long-term solar variability on the climate of Venus and Mars. This fact is possibly due to the absence of liquid water on these terrestrial planets.  相似文献   

17.
Understanding the processes involved in the interaction of solar system bodies with plasma flows is fundamental to the entire field of space physics. The features of the interaction can be very different, depending upon the properties of the incident plasma as well as the nature of the obstacle. The properties of the atmosphere/ionosphere associated with the obstacle are of particular importance into understanding the plasma interaction process, especially for non-magnetized obstacle. This paper discusses in detail the roles of the atmosphere and ionosphere systems of plasma interaction around Venus, Mars, comets and some particular satellites. The coupling between magnetosphere and ionosphere is also discussed for Earth and Giant planets.  相似文献   

18.
The heating of the upper atmospheres and the formation of the ionospheres on Venus and Mars are mainly controlled by the solar X-ray and extreme ultraviolet (EUV) radiation (λ = 0.1–102.7 nm and can be characterized by the 10.7 cm solar radio flux). Previous estimations of the average Martian dayside exospheric temperature inferred from topside plasma scale heights, UV airglow and Lyman-α dayglow observations of up to ∼500 K imply a stronger dependence on solar activity than that found on Venus by the Pioneer Venus Orbiter (PVO) and Magellan spacecraft. However, this dependence appears to be inconsistent with exospheric temperatures (<250 K) inferred from aerobraking maneuvers of recent spacecraft like Mars Pathfinder, Mars Global Surveyor and Mars Odyssey during different solar activity periods and at different orbital locations of the planet. In a similar way, early Lyman-α dayglow and UV airglow observations by Venera 4, Mariner 5 and 10, and Venera 9–12 at Venus also suggested much higher exospheric temperatures of up to 1000 K as compared with the average dayside exospheric temperature of about 270 K inferred from neutral gas mass spectrometry data obtained by PVO. In order to compare Venus and Mars, we estimated the dayside exobase temperature of Venus by using electron density profiles obtained from the PVO radio science experiment during the solar cycle and found the Venusian temperature to vary between 250–300 K, being in reasonable agreement with the exospheric temperatures inferred from Magellan aerobraking data and PVO mass spectrometer measurements. The same method has been applied to Mars by studying the solar cycle variation of the ionospheric peak plasma density observed by Mars Global Surveyor during both solar minimum and maximum conditions, yielding a temperature range between 190–220 K. This result clearly indicates that the average Martian dayside temperature at the exobase does not exceed a value of about 240 K during high solar activity conditions and that the response of the upper atmosphere temperature on Mars to solar activity near the ionization maximum is essentially the same as on Venus. The reason for this discrepancy between exospheric temperature determinations from topside plasma scale heights and electron distributions near the ionospheric maximum seems to lie in the fact that thermal and photochemical equilibrium applies only at altitudes below 170 km, whereas topside scale heights are derived for much higher altitudes where they are modified by transport processes and where local thermodynamic equilibrium (LTE) conditions are violated. Moreover, from simulating the energy density distribution of photochemically produced moderately energetic H, C and O atoms, as well as CO molecules, we argue that exospheric temperatures inferred from Lyman-α dayglow and UV airglow observations result in too high values, because these particles, as well as energetic neutral atoms, transformed from solar wind protons into hydrogen atoms via charge exchange, may contribute to the observed planetary hot neutral gas coronae. Because the low exospheric temperatures inferred from neutral gas mass spectrometer and aerobraking data, as well as from CO+ 2 UV doublet emissions near 180–260 nm obtained from the Mars Express SPICAM UV spectrograph suggest rather low heating efficiencies, some hitherto unidentified additional IR-cooling mechanism in the thermospheres of both Venus and Mars is likely to exist. An erratum to this article can be found at  相似文献   

19.
Because the solar radiation and particle environment plays a major role in all atmospheric processes such as ionization, dissociation, heating of the upper atmospheres, and thermal and non-thermal atmospheric loss processes, the long-time evolution of planetary atmospheres and their water inventories can only be understood within the context of the evolving Sun. We compare the effect of solar induced X-ray and EUV (XUV) heating on the upper atmospheres of Earth, Venus and Mars since the time when the Sun arrived at the Zero-Age-Main-Sequence (ZAMS) about 4.6 Gyr ago. We apply a diffusive-gravitational equilibrium and thermal balance model for studying heating of the early thermospheres by photodissociation and ionization processes, due to exothermic chemical reactions and cooling by IR-radiating molecules like CO2, NO, OH, etc. Our model simulations result in extended thermospheres for early Earth, Venus and Mars. The exospheric temperatures obtained for all the three planets during this time period lead to diffusion-limited hydrodynamic escape of atomic hydrogen and high Jeans’ escape rates for heavier species like H2, He, C, N, O, etc. The duration of this blow-off phase for atomic hydrogen depends essentially on the mixing ratios of CO2, N2 and H2O in the atmospheres and could last from ∼100 to several hundred million years. Furthermore, we study the efficiency of various non-thermal atmospheric loss processes on Venus and Mars and investigate the possible protecting effect of the early martian magnetosphere against solar wind induced ion pick up erosion. We find that the early martian magnetic field could decrease the ion-related non-thermal escape rates by a great amount. It is possible that non-magnetized early Mars could have lost its whole atmosphere due to the combined effect of its extended upper atmosphere and a dense solar wind plasma flow of the young Sun during about 200 Myr after the Sun arrived at the ZAMS. Depending on the solar wind parameters, our model simulations for early Venus show that ion pick up by strong solar wind from a non-magnetized planet could erode up to an equivalent amount of ∼250 bar of O+ ions during the first several hundred million years. This accumulated loss corresponds to an equivalent mass of ∼1 terrestrial ocean (TO (1 TO ∼1.39×1024 g or expressed as partial pressure, about 265 bar, which corresponds to ∼2900 m average depth)). Finally, we discuss and compare our findings with the results of preceding studies.  相似文献   

20.
The investigations of Venus take a special position in planetary researches. It was just the atmosphere of Venus where first measurements in situ were carried out by means of the equipment delivered by a space probe (Venera 4, 1967). Venus appeared to be the first neighbor planet whose surface had been seen by us in the direct nearness made possible by means of the phototelevision device (Venera 9 and Venera 10, 1975). The reasons for the high interest in this planet are very simple. This planet is like the Earth by its mass, size and amount of energy obtained from the Sun and at the same time it differs sharply by the character of its atmosphere and climate. We hope that the investigations of Venus will lead us to define more precisely the idea of complex physical and physical-chemical processes which rule the evolution of planetary atmospheres. We hope to learn to forecast this evolution and maybe, in the far future, to control it. The last expeditions to Venus carried out in 1978 — American (Pioneer-Venus) and Soviet (Venera 11 and 12) — brought much news and it is interesting to sum up the results just now. The contents of this review are:
  1. The planet Venus — basic astronomical data.
  2. Chemical composition.
  3. Temperature, pressure, density (from 0 to 100 km).
  4. Clouds.
  5. Thermal regime and greenhouse effect.
  6. Dynamics.
  7. Chemical processes.
  8. Upper atmosphere.
  9. Origin and evolution.
  10. Problems for future studies
Here we have attempted to review the data published up to 1979 and partly in 1980. The list of references is not exhaustive. Publications of special issues of magazines and collected articles concerning separate space expeditions became traditional last time. The results obtained on the Soviet space probes Venera 9, 10 (the first publications) are collected in the special issues of Kosmicheskie issledovanija (14, Nos. 5, 6, 1975), analogous material about Venera 11, 12 is given at Pis'ma Astron. Zh. (5, Nos. 1 and 5, 1978), and in Kosmicheskie issledovanija (16, No. 5, 1979). The results of Pioneer-Venus mission are represented in two Science issues (203, No. 4382; 205, No. 4401) and special issue of J. Geophys. Res. (1980). We shall mention some articles to the same topic among previous surveys: (Moroz, 1971; Sagan, 1971; Marov, 1972; Hunten et al., 1977; Hoffman et al., 1977) and also the books by Kuzmin and Marov (1974) and Kondrat'ev (1977). Some useful information in the part of ground-based observations may be found in the older sources (for example, Sharonov, 1965; Moroz, 1967). For briefness we shall use as a rule the abbreviations of space missions names: V4 instead of Venera 4, M10 instead of Mariner 10 and so on. The first artificial satellites of Venus in the world (orbiters Venera 9 and 10) we shall mark as V9-O, V10-O unlike the descent probes V9, V10. Fly-by modules of Venera 11 and Venera 12 we shall mark as V11-F and V12-F. Pioneers descent probes — Large (Sounder), Day, Night and North — will be marked as P-L, P-D, P-Ni, P-No, orbiter as P-O, and bus as P-B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号