首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
This paper reports the diurnal, seasonal, and long term variability of the E layer critical frequency (foE) and peak height (hmE) derived from Digisonde measurements from 2009 to 2016 at the low-middle latitude European station of Nicosia, Cyprus (geographical coordinates: 35°N, 33°E, geomagnetic lat. 29.38°N, I = 51.7°). Manually scaled monthly median values of foE and hmE are compared with IRI-2012 predictions with a view to assess the predictability of IRI. Results show that in general, IRI slightly overestimates foE values both at low and high solar activity. At low solar activity, overestimations are mostly limited to 0.25?MHz (equivalent electron density, 0.775?×?103?el/m?3) but can go as high as 0.5?MHz (equivalent electron density, 3.1?×?103?el/m?3, during noon) around equinox. In some months, underestimations, though sporadic in nature, up to 0.25?MHz are noted (mostly during sunrise and sunset). At high solar activity, a similar pattern of over-/underestimation is evident. During the entire period of study, over-/under estimations are mostly limited to 0.25?MHz. In very few cases, these exceed 0.25?MHz but are limited to 0.5?MHz. Analysis of hmE reveals that: (1) hmE remains almost constant during ±2 to ±4?h around local noon, (2) hmE values are higher in winter than in spring, summer and autumn, (3) there are two maxima near sunrise and sunset with a noontime minimum in between. During the entire period of study, significant differences between observed hmE and the IRI predictions have been noted. IRI fails to predict hmE and outputs a constant value of 110?km, which is higher than most of the observed values. Over- and under estimations range from 3 to 13?km and from 0 to 3?km respectively.  相似文献   

2.
在文献[1]推导的基础上将不稳定判据扩展到±30°磁纬之间的低纬地区.为研究初始扰动波数对等离子体泡的影响,分析了λmin随初始扰动波数的变化规律,选择二分法计算λmin=1时的临界波数αc,并分析αc随经纬度、太阳活动、季节、地方时以及水平东向电场强度的变化.主要结论如下:αc随经纬度、季节、太阳活动以及地方时的变化规律和等离子体泡及闪烁活动的规律基本一致,αc越小,等离子体泡越容易产生;水平东向电场增强有利于等离子体泡形成.αc的值对人工影响电离层时选择最优扰动条件具有一定的指导意义.   相似文献   

3.
等离子体层是日地环境重要的组成部分.本文利用COSMIC掩星精密定轨数据经处理后得到的podTec文件获取等离子体层电子含量(PEC)对等离子体层进行研究.将podTec数据进行处理后获得的PEC(pod-PEC)和IRI-Plas经验模型提供的PEC (IRI-PEC)进行对比,发现pod-PEC与IRI-PEC符合得较好.在低(0°—20°)、中(20°—50°)、高(50°—90°)修正地磁纬度带下,分析了COSMIC在太阳活动极大年(2014年)3,6,9和12月的pod-PEC,得到如下结论:PEC随着纬度升高而逐渐减少,且3,9月PEC在中低纬关于磁赤道的南北对称性较好,6月北半球各纬度带的PEC明显高于南半球同一纬度带的值,而12月情况则完全相反,南半球中纬的PEC甚至会等于北半球低纬的PEC值;PEC在白天高而晚上低,高纬地区的PEC昼夜变化不明显;PEC具有明显的季节性.对于北半球,一年中PEC最大值出现在春季,冬秋季次之,夏季最低,具有明显的年度异常现象.   相似文献   

4.
5.
Multi-reflected echoes (MREs) and satellite traces (STs) are referred in literature as ionogram signatures of Travelling Ionospheric Disturbances (TIDs) which is a phenomenon that apparently drives spread F development mainly at nighttime mid-latitude ionosphere. A long-term statistical study has been undertaken to investigate the morphological aspect of these signatures over the lower midlatitude European station of Nicosia, Cyprus (35.19°N, 33.38°E geographic; magnetic dip. 29.38°N) by inspecting all ionograms recorded by the DPS-4D digisonde in the interval 2009–2016. The results underline the systematic manifestation of these TID signatures over Cyprus with a possible (although not quite clear) solar activity dependence and a distinctive seasonal and diurnal occurrence rate with a seasonal peak of STs during summer and of MREs during January to April. Based on the experimental results of the present study, the seasonal occurrence rate of MREs and STs is found to increase by 75% and 56% during high solar activity periods. Satellite traces are well known ionogram signatures of TIDs and mostly correlated to the nighttime spread F formation. The occurrence of mid-latitude spread Fs over European longitude sector normally increases during summer. The occurrences of TIDs are also prominent at this interval of the year over nighttime mid-latitude ionosphere. The presence of MREs as an ionogram signature of TIDs over mid-latitude ionosphere is unique in nature.  相似文献   

6.
Measurements and theory of diurnal and semidiurnal tidal oscillations between about 25 and 80 km are reviewed. At latitudes greater than about 30°, meridional (N-S) wind components are consistently in quadrature with and similar to the zonal (E-W) components. The tidal structures are interpreted as a superposition of quasi-steady higher-order modes excited in the troposphere by sources of limited extent (1,000–10,000 km). At latitudes less than about 30°, steady or quasi-steady diurnal and semidiurnal components are not necessarily the dominant components of the daily variation. At high latitudes diurnal phases generally show little change with height in comparison with observations at lower latitudes, in accord with the latitudinal properties of diurnal modes with positive and negative equivalent depths.  相似文献   

7.
It is important to understand the convection of the inner magnetosphere to fully describe the response of the low- to mid-latitude thermosphere-ionosphere system to geomagnetic storms. Realistic numerical simulations of mid-latitude electric fields suffer from limited knowledge of lower thermospheric winds and ionospheric conductivity on a global scale. Even empirical models of mid-latitude electric fields suffer from the paucity of measurements made by the handful of incoherent scatter radars concentrated in the American-European sector, and the intermittent satellite measurements made in other regions. Thus it would be very useful to show the extent to which Doppler velocity measurements made with the numerous digital ionosondes deployed around the globe can be used to infer F-region electric fields. The monthly average diurnal variation of Doppler velocity measured by a recently commissioned Digisonde at Bundoora (145.1°E, 37.7°S, geographic; 49°S magnetic) is seen to resemble the average diurnal variation of ion drift measured by the incoherent scatter radar at Millstone Hill (71.5°W 42.6°N; 57°N). Moreover, the Bundoora measurements exhibit the nighttime westward perturbation drifts found in Dynamics Explorer-2 ion drift measurements.  相似文献   

8.
We have compared the TEC obtained from the IRI-2012 model with the GPS derived TEC data recorded within southern crest of the EIA in the Eastern Africa region using the monthly means of the 5 international quiet days for equinoxes and solstices months for the period of 2012 – 2013. GPS-derived TEC data have been obtained from the Africa array and IGS network of ground based dual-frequency GPS receivers from four stations (Kigali (1.95°S, 30.09°E; Geom. Lat. 11.63°S), Malindi (2.99°S, 40.19°E; Geom. Lat. 12.42°S), Mbarara (0.60°S, 30.74°E; Geom. Lat. 10.22°S) and Nairobi (1.22°S, 36.89°E; Geom. Lat. 10.69°S)) located within the EIA crest in this region. All the three options for topside Ne of IRI-2012 model and ABT-2009 for bottomside thickness have been used to compute the IRI TEC. Also URSI coefficients were considered in this study. These results are compared with the TEC estimated from GPS measurements. Correlation Coefficients between the two sets of data, the Root-Mean Square Errors (RMSE) of the IRI-TEC from the GPS-TEC, and the percentage RMSE of the IRI-TEC from the GPS-TEC have been computed. Our general results show that IRI-2012 model with all three options overestimates the GPS-TEC for all seasons and at all stations, and IRI-2001 overestimates GPS-TEC more compared with other options. IRI-Neq and IRI-01-corr are closely matching in most of the time. The observation also shows that, GPS TEC are underestimated by TEC from IRI model during noon hours, especially during equinoctial months. Further, GPS-TEC values and IRI-TEC values using all the three topside Ne options show very good correlation (above 0.8). On the other hand, the TEC using IRI-Neq and IRI-01- corr had smaller deviations from the GPS-TEC compared to the IRI-2001.  相似文献   

9.
The total electron content (TEC) derived from the global positioning system (GPS) and the F2-layer peak electron density obtained from Digisonde data have been used to study the diurnal, seasonal and solar activity variations of the ionospheric equivalent slab thickness (τ) over three European stations located at Pruhonice (50.0°N, 15.0°E), Ebro (40.8°N, 0.5°E) and El Arenosillo (37.1°N, 353.3°E). The diurnal variation of the τ is characterized by daytime values lower than nighttime ones for all seasons at low solar activity while daytime values larger than nighttime characterizes the diurnal variation for summer at high solar activity. A double peak is noticeable at dusk and at dawn, better expressed for winter at low solar activity. The seasonal variations of τ depend on local time and solar activity, the daytime values of τ increases from winter to summer whereas nighttime values of τ show the opposite. The effect of the solar activity on τ depends on local time and season, there being very sensitive for winter nighttime values of τ. The results of this study are compared with those presented by other authors.  相似文献   

10.
The Grahamstown, South Africa (33.3°S, 26.5°E) ionospheric field station operates a Lowell digital pulse ionospheric sounder (Digisonde) whose output includes scaled parameters derived from the measured ionogram. One of these output parameters is the ionospheric scale height parameter (H), and this paper presents an analysis of the seasonal, diurnal, and solar activity variations of this parameter over the Grahamstown station. Ionosonde data from three years 2002, 2003, and 2004 were used in this study. The data was subjected to a general trend analysis to remove any outliers and then the monthly median data were used to explore the different variations. The results of this analysis were found to be similar to what has already been presented in the literature for low latitude stations, and are presented as well as the correlation at this mid-latitude station between the H parameter, the IRI shape parameter (B0), and the peak electron density (NmF2).  相似文献   

11.
A comparison of the ionospheric F-region critical frequency (foF2) between ionosonde measurements and IRI-2016 predictions is studied over China during the period from January 2008 to October 2016. Four stations are selected, and the latitude coverage starts at 49.4°N and ends at 23.2°N with a sequential latitude interval of about 10°, the corresponding geomagnetic latitudes are from 39.5°N to 13.2°N. The results show that the variability of the observed foF2 versus latitudes, seasons, local time and levels of solar activity could be well reproduced by IRI-2016. However, the daily lowest value of foF2 from the IRI-2016 prediction occurs earlier than that from the ionosonde. Around the sunrise, the IRI-2016 prediction shows a very sharp rise and grows much faster than the observed foF2 in every month. The foF2 difference between the two options (URSI and CCIR) in IRI-2016 increases as the F10.7 index decreases. During 2008–2009, the annual average deviations of URSI and CCIR range from ?5% to ?10% and from 5% to ?5%, respectively. Generally, the CCIR performs better than URSI during postsunset under low solar activity or in Equatorial Ionization Anomaly (EIA) region over China, while it shows no large difference in performance with URSI in other locations or for other time.  相似文献   

12.
In an earlier report [1] the authors proposed an Indian Standard Tropical Atmosphere (ISTA1) from mean sea level to 20 km. This proposal describes adequately the mean conditions from 0° to about 30°N. The present work extends ISTA1 to the higher altitude of 50 km based oni. World Data Center A reports on Rocket firings [2],ii. M-100 rocket data for Thumba, India [3],iii. Northern Reference Atmospheres data of Cole and Kantor [4], andiv. Southern Reference Atmospheres data of Koshelkov [5].The proposed atmosphere, called ISTA7, has a sea level temperature of 30°C and a constant lapse rate of 6.5°C/km up to 16 km, as in ISTA1; from a temperature of -74°C at this altitude, there is a constant lapse rate of -2.3°C/km up to 46 km where the temperature is -5°C; the temperature remains constant thereafter up to 50 km. The fact that variations with longitude are weak except at very high latitudes [4], together with the fact that around 50 km, the temperature increases from low to high latitudes, lead us to propose a constant temperature of -5°C between 46 and 50 km, even though this temperature is slightly higher (by about 5°C) than the Thumba data.1/  相似文献   

13.
This paper examines the performances of NeQuick2, the latest available IRI-2016, IRI-2012 and IRI-2007 models in describing the monthly and seasonal mean total electron content (TEC) over the East African region. This is to gain insight into the success of the various model types and versions at characterizing the ionosphere within the equatorial ionization anomaly. TEC derived from five Global Positioning System (GPS) receivers installed at Addis Ababa (ADD, 5.33°N, 111.99°E Geog.), Asab (ASAB, 8.67°N, 116.44°E Geog.), Ambo (ABOO, 5.43°N, 111.05°E Geog.), Nairobi (RCMN, ?4.48°N, 108.46°E Geog.) and Nazret (NAZR, 4.78°N, 112.43°E Geog.), are compared with the corresponding values computed using those models during varying solar activity period (1998 and 2008–2015). We found that different models describe the equatorial and anomaly region ionosphere best depending on solar cycle, season and geomagnetic activity levels. Our results show that IRI-2016 is the best model (compared to others in terms of discrepancy range) in estimating the monthly mean GPS-TEC at NAZR, ADD and RCMN stations except at ADD during 2008 and 2012. It is also found that IRI-2012 is the best model in estimating the monthly mean TEC at ABOO station in 2014. IRI show better agreement with observations during June solstice for all the years studied at ADD except in 2012 where NeQuick2 better performs. At NAZR, NeQuick2 better performs in estimating seasonal mean GPS-TEC during 2011, while IRI models are best during 2008–2009. Both NeQuick2 and IRI models underestimate measured TEC for all the seasons at ADD in 2010 but overestimate at NAZR in 2009 and RCMN in 2008. The periodic variations of experimental and modeled TEC have been compared with solar and geomagnetic indices at ABOO and ASAB in 2014 and results indicate that the F10.7 and sunspot number as indices of solar activity seriously affects the TEC variations with periods of 16–32?days followed by the geomagnetic activity on shorter timescales (roughly periods of less than 16?days). In this case, NeQuick2 derived TEC shows better agreement with a long term period variations of GPS-TEC, while IRI-2016 and IRI-2007 show better agreement with observations during short term periodic variations. This indicates that the dependence of NeQuick2 derived TEC on F10.7 is seasonal. Hence, we suggest that representation of geomagnetic activity indices is required for better performance over the low latitude region.  相似文献   

14.
Electron density profiles derived from Digisonde ionograms at Argentia, Millstone Hill, Wallops Island, Bermuda, Dourbes and Karachi are compared with IRI model prediction. Four months of data for 1989/90 were analyzed. For a number of station/months N(h) profiles were available every 15 or 30 minutes providing a good statistical database for the evaluation of the IRI model in terms of diurnal and seasonal variations. The data presented here are part of the VIM study (Validation of Ionospheric Models) initiated by the URSI Working Group G3 on Ionospheric Informatics.  相似文献   

15.
This paper presents the vertical total electron content vTEC variations for three African stations, located at mid-low and equatorial latitudes, and operating since more than 10 years. The vTEC of the middle latitude GPS station in Alexandria, Egypt (31.2167°N; 29.9667°E, geographic) is compared to the vTEC of two others GPS stations: the first one in Rabat/Morocco (33.9981°N; 353.1457°E, geographic), and the second in Libreville/Gabon (0.3539°N; 9.6721°E, geographic). Our results discussed the diurnal, seasonal, and solar cycle dependences of vTEC at the local ionospheric conditions, during different phases of solar cycle in the light of the classification of Legrand and Simon. The vTEC over Alexandria exhibits the well-known equinoctial asymmetry which changes with the phases of the solar cycle; the spring vTEC is larger than that of autumn during the maximum, decreasing and minimum phases of solar cycle 23. During the increasing phase of solar cycle 24, it is the contrary. The diurnal variation of the vTEC presents multiple maxima during the equinox from 2005 to 2008 and during the summer solstice from 2006 to 2012. A nighttime vTEC enhancement and winter anomaly are also observed. During the deep solar minimum (2006–2009) the diurnal variation of the vTEC observed over Alexandria is similar to the diurnal variation observed during quiet magnetic period at equatorial latitudes. We observed also that the amplitude of vTEC at Libreville is larger than the amplitude of vTEC observed at Alexandria and Rabat, indeed Libreville is near the southern crest of the Equatorial Ionization anomaly. Finally, the correlation coefficient between vTEC and the sunspot number Rz is high and changes with solar cycle phases.  相似文献   

16.
It is well known that the solar wind can significantly affect high-latitude ionospheric dynamics. However, the effects of the solar wind on the middle- and low-latitude ionosphere are much less studied. In this paper, we report observations that large perturbations in the middle- and low-latitude ionosphere are well correlated with solar wind variations. In one event, a significant (20–30%) decrease of the midlatitude ionospheric electron density over a large latitudinal range was related to a sudden drop in the solar wind pressure and a northward turning of the interplanetary magnetic field, and the density decrease became larger at lower latitudes. In another event, periodic perturbations in the dayside equatorial ionospheric E × B drift and electrojet were closely associated with variations in the interplanetary electric field. Since the solar wind is always changing with time, it can be a very important and common source of ionospheric perturbations at middle- and low-latitudes. The relationship between solar wind variations and significant ionospheric perturbations has important applications in space weather.  相似文献   

17.
This paper presents annual, seasonal and diurnal variations of integrated water vapor (IWV) derived from Global Positioning System (GPS) measurements for a tropical site, Hyderabad (17.4° N, 78.46° E). The zenith wet delay (ZWD) due to the troposphere has been computed using GPS observations and collocated meteorological data. ZWD is converted to IWV with very little added uncertainty. Mean monthly IWV values show maximum in July (~50 kg m−2) and minimum in December (~15 kg m−2). Fast Fourier Transform (FFT) and Harmonic analyses methods have been adopted to extract amplitudes and phases of diurnal (24 h), semi-diurnal (12 h) and ter-diurnal (8 h) oscillations which yielded comparable results. Amplitude of the 24 h component is observed to be maximum in spring whereas 12 h and 8 h components maximize in summer. A cross-correlation study between available daily IWV values and corresponding surface temperatures over one year produced a good correlation coefficient (0.44). The correlation obtained for different seasons got reduced to 0.25, 0.02, −0.39 and 0.21 for winter, spring, summer and autumn seasons respectively. The correlation between IWV and rainfall is poor. The coefficients obtained for the whole year is 0.05 and −0.13 for the rainy season.  相似文献   

18.
NeQuick ionospheric electron density model, which has been developed to version 2, produces the full electron density profile in the ionosphere. Each part of the profile is modeled using Epstein layer formalism. Simple empirical relations are used to compute the thicknesses of each layer. In order to validate the B2bot parameter in the NeQuick model during high solar activity, we use the data at Hainan, China (109.1°E, 19.5°N; Geomagnetic coordinates: 178.95°E, 8.1°N), measured with DPS-4, and study the diurnal and seasonal variations of B2bot, ΔB2 (B2best − B2NeQuick 2) and the seasonal median values of B2best/B2NeQuick 2 at that region. The results show that, (1) The differences between B2best and B2NeQuick 2 have diurnal and seasonal variations. (2) The diurnal variations of B2NeQuick 2 are smaller than those of B2best. (3) Generally, except for early morning the experimental values are properly reproduced. (4) Generally, during morning the NeQuick model has an underestimation. The magnitude of underestimation varies with LT and season.  相似文献   

19.
During January–August 1978, the global atmospheric angular momentum (M) exhibits distinct patterns of short term momentum interchange across latitudes. In the northern hemisphere winter-spring season, 30–50 day modulations of M are present in which momentum enhancements at mid-latitudes (20–30°) are closely matched by momentum depressions at high latitudes (50–60°). During the same interval there are no corresponding variations in M evident in the southern hemisphere. Conversely, during southern hemisphere fall-winter, similar anticorrelations in monthly scale momentum excursions are evident between mid and high latitudes. In the northern hemisphere, the winter-spring momentum signatures are detected throughout the atmosphere, from the lower troposphere to the stratosphere. During the southern hemisphere fall-winter, the modulation patterns are not evident at the higher altitudes. Structural details of the momentum signatures indicate that the coupling is sometimes effective on very short time scales, e.g. 1–2 days, or less. The evidence of distinct anti-correlation between large regions has interesting implications for studies of global atmospheric circulation, and also for studies of the excitation of variations in earth rotation in response to short term modulations of M.  相似文献   

20.
Responses of low-latitude ionospheric critical frequency of F2 layer to geomagnetic activities in different seasons and under different levels of solar activity are investigated by analyzing the ionospheric foF2 data from DPS-4 Digisonde in Hainan Observatory during 2002–2005. The results are as follows: (1) the response of foF2 to geomagnetic activity in Hainan shows obvious diurnal variation except for the summer in low solar activity period. Generally, geomagnetic activity will cause foF2 to increase at daytime and decrease at nighttime. The intensity of response of foF2 is stronger at nighttime than that at daytime; (2) seasonal dependence of the response of foF2 to geomagnetic activity is very obvious. The negative ionospheric storm effect is the strongest in summer and the positive ionospheric storm effect is the strongest in winter; (3) the solar cycle has important effect on the response of foF2 to geomagnetic activity in Hainan. In high solar activity period, the diurnal variation of the response of foF2 is very pronounced in each season, and the strong ionospheric response can last several days. In low solar activity period, ionospheric response has very pronounced diurnal variation in winter only; (4) the local time of geomagnetic activities occurring also has important effect on the responses of foF2 in Hainan. Generally, geomagnetic activities occurred at nighttime can cause stronger and longer responses of foF2 in Hainan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号