首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
John C. Mankins   《Acta Astronautica》2009,65(9-10):1208-1215
Systems that depend upon the application of new technologies inevitably face three major challenges during development: performance, schedule and budget. Technology research and development (R&D) programs are typically advocated based on argument that these investments will substantially reduce the uncertainty in all three of these dimensions of project management. However, if early R&D is implemented poorly, then the new system developments that plan to employ the resulting advanced technologies will suffer from cost overruns, schedule delays and the steady erosion of initial performance objectives. It is often critical for senior management to be able to determine which of these two paths is more likely—and to respond accordingly. The challenge for system and technology managers is to be able to make clear, well-documented assessments of technology readiness and risks, and to do so at key points in the life cycle of the program.Several approaches have been used to evaluate technology maturity and risk in order to better anticipate later system development risks. The “technology readiness levels” (TRLs), developed by NASA, are one discipline-independent, programmatic figure of merit (FOM) that allows more effective assessment of, and communication regarding the maturity of new technologies. Another broadly used management tool is of the “risk matrix”, which depends upon a graphical representation of uncertainty and consequences. However, for the most part these various methodologies have had no explicit interrelationship.This paper will examine past uses of current methods to improve R&D outcomes and will highlight some of the limitations that can arise. In this context, a new concept for the integration of the TRL methodology, and the concept of the “risk matrix” will be described. The paper will conclude with observations concerning prospective future directions for the important new concept of integrated “technology readiness and risk assessments”.  相似文献   

2.
Proliferation and pace of advancing technologies warrant policy and strategic decision-making. Without thinking ahead, companies can loose marketshare and countries can yield comparative advantage. The rate at which burgeoning technologies progress, however, can make it difficult for corporations and governments alike to discern or better anticipate critical junctures in technology developments. This paper presents a conceptual, multidimensional framework, the “evolutionary path”, for understanding the stages of technological development in the civil space area. The analysis draws from three case studies — communications satellites, computers, and launch vehicles — and shows how the implications and developments of new, breakthrough technologies differ from the incremental technology upgrades or the later emergence of interconnected systems and infrastructures.  相似文献   

3.
Two problems were found in recent applications of TRLs in aerospace projects.One is how to accurately evaluate the readiness level of a given technology in a project using the TRL scale.The other is how to deal with the diversity(different types) of technologies involved in an aerospace project.To solve these problems,a technology readiness assessment(TRA) method based on three maturity characteristics is established,and this method is adapted according to the features of different types of technologies.The proposed method has been successfully applied to aerospace projects and enables great effectiveness and accuracy in assessing new technologies.  相似文献   

4.
When US President George W. Bush on 14 January 2004 announced a new US “Vision for Space Exploration”, he called for international participation in “a journey, not a race”, a call received with skepticism and concern elsewhere. But, after a slow start in implementing this directive, during 2006 NASA has increased the forward momentum of action on the program and of discussions on international cooperation in exploring “the Moon, Mars, and beyond”. There are nevertheless a number of significant top-level issues that must be addressed if a cooperative approach to human space exploration is to be pursued. These include the relationship between utilization of the ISS and the lunar exploration plans, integration of potential partners’ current and future capabilities into the exploration plans, and the evolving space-related intentions of other countries.  相似文献   

5.
The X-38 Project forms part of the “X” prototype vehicle family developed by the United States. Its development was initiated by NASA to prepare the Crew Return Vehicle (CRV). The European participation in the X-38 Program has been significantly extended since the start of the X-38 cooperation in 1997 and is realized by ESA's “Applied Reentry Technology Program” and the German/DLR “Technologies for Future Space Transportation Systems” (TETRA) Project. European contributions to the X-38 Vehicle 201, (V-201) can be found in all technical key areas. The orbital flight and reentry with the X-38 V-201 will conclude the X-38 project in 2002.The CRV will be used from about mid-2005 as ’ambulance‘, ’lifeboat‘ or as alternate return vehicle for the crew of the International Space Station. Recognizing the very productive and mutually beneficial cooperation established on X-38, NASA and ESA have decided to continue this cooperation into the development of the operational CRV. The Phase C/D will be completed shortly after the Critical Design Review, scheduled for August 2002. The CRV production phase will start in October 2002 and will cover production of four CRV vehicles, ending in 2006.Based on the objective to identify a further evolution potential of the CRV towards a Crew Cargo Transfer Vehicle (CCTV), NASA has implemented upgrade studies in the CRV Phase C/D.  相似文献   

6.
Vera Mayorova  Kirill Mayorov   《Acta Astronautica》2009,65(9-10):1393-1396
Current educational system is facing a contradiction between the fundamentality of engineering education and the necessity of applied learning extension, which requires new methods of training to combine both academic and practical knowledge in balance. As a result there are a number of innovations being developed and implemented into the process of education aimed at optimizing the quality of the entire educational system. Among a wide range of innovative educational technologies there is an especially important subset of educational technologies which involve learning through hands-on scientific and technical projects. The purpose of this paper is to describe the implementation of educational technologies based on small satellites development as well as the usage of Earth remote sensing data acquired from these satellites. The increase in public attention to the education through Earth remote sensing is based on the concern that although there is a great progress in the development of new methods of Earth imagery and remote sensing data acquisition there is still a big question remaining open on practical applications of this kind of data. It is important to develop the new way of thinking for the new generation of people so they understand that they are the masters of their own planet and they are responsible for its state. They should desire and should be able to use a powerful set of tools based on modern and perspective Earth remote sensing. For example NASA sponsors “Classroom of the Future” project. The Universities Space Research Association in United States provides a mechanism through which US universities can cooperate effectively with one another, with the government, and with other organizations to further space science and technology, and to promote education in these areas. It also aims at understanding the Earth as a system and promoting the role of humankind in the destiny of their own planet. The Association has founded a Journal of Earth System Science Education. Authors describe an effective model of educational technology developed in the Center for Earth Remote Sensing of Bauman Moscow State Technical University and based on scientific and educational organizations integration in the field of applied studies. The paper also presents how students are being trained to acquire and process satellite imagery data from Terra and Aqua satellites. It also reveals the results of space monitoring for Russia's ecologically complex regions conducted by Bauman Moscow State Technical University students in cooperation with specialists from the Laboratory for Aerospace Methods of Moscow State University named after M. Lomonosov.  相似文献   

7.
The Small Satellite Technology Initiative (SSTI) is a National Aeronautics and Space Administration (NASA) program to demonstrate smaller, high technology satellites constructed rapidly and less expensively. Under SSTI, NASA funded the development of “Clark,” a high technology demonstration satellite to provide 3-m resolution panchromatic and 15-m resolution multispectral images, as well as collect atmospheric constituent and cosmic x-ray data. The 690-Ib. satellite, to be launched in early 1997, will be in a 476 km, circular, sun-synchronous polar orbit. This paper describes the program objectives, the technical characteristics of the sensors and satellite, image processing, archiving and distribution. Data archiving and distribution will be performed by NASA Stennis Space Center and by the EROS Data Center, Sioux Falls, South Dakota, USA.  相似文献   

8.
If a detection of ETI takes place, this will in all probability be the result of either: (a) detecting and recognising a signal or other emission of ETI; or (b) the finding of an alien artifact (for instance on the Moon or other Celestial Body of our Solar System); or (c) the highly improbable event of an actual encounter. First and foremost, legal consequences regarding any of these contingencies will result from immediate consultations between nations on Earth. Understandings, memoranda and even agreements might be proposed and/or concluded. Such results within the field of terrestrial law will surely be a new branch of International Law, and particularly of International Space Law. At the same time, terrestrial nations will have to realize that any ETI will be self-determined intelligent individualities or organizations who might have their own understanding of “rules of behaviour” and thus, be legal subjects. Whether one calls such rules “law” or not: if two intelligent races—both of which have specific rules of behaviour—come into contact with each other, the basic understanding of such mutual rules will lead to a kind of “code of conduct”. This might be the starting point for a kind of Law—Metalaw—between different races in the Universe.  相似文献   

9.
Through the active transfer of technology, the National Aeronautics and Space Administration (NASA) Technology Utilization (TU) Program assists private companies, associations, and government agencies to make effective use of NASA's technological resources to improve U.S. economic competitiveness and to provide societal benefit. Aerospace technology from areas such as digital image processing, space medicine and biology, microelectronics, optics and electrooptics, and ultrasonic imaging have found many secondary applications in medicine. Examples of technology spinoffs are briefly discussed to illustrate the benefits realized through adaptation of aerospace technology to solve health care problems. Successful implementation of new technologies increasingly requires the collaboration of industry, universities, and government, and the TU Program serves as the liaison to establish such collaborations with NASA. NASA technology is an important resource to support the development of new medical products and techniques that will further advance the quality of health care available in the U.S. and worldwide.  相似文献   

10.
Recent advances in materials technology have improved the performance capabilities of inflatable, flexible composite structures, which have increased their potential for use in numerous space applications. Space suits, which are comprised of flexible composite components, are a good example of the successful use of inflatable composite structures in space. Space suits employ inflatables technology to provide a stand alone spacecraft for astronauts during extra-vehicular activity. A natural extension of this application of inflatables technology is in orbital or planetary habitat structures. NASA Johnson Space Center (JSC) is currently investigating flexible composite structures deployed via inflation for use as habitats, transfer vehicles and depots for continued exploration of the Moon and Mars.

Inflatable composite structures are being investigated because they offer significant benefits over conventional structures for aerospace applications. Inflatable structures are flexible and can be packaged in smaller and more complex shaped volumes, which result in the selection of smaller launch vehicles which dramatically reduce launch costs. Inflatable composite structures are typically manufactured from materials that have higher strength to weight ratios than conventional systems and are therefore lower in mass. Mass reductions are further realized because of the tailorability of inflatable composite structures, which allow the strength of the system to be concentrated where needed. Flexible composite structures also tend to be more damage tolerant due to their “forgiveness” as compared to rigid mechanical systems. In addition, inflatables have consistently proven to be lower in both development and manufacturing costs.

Several inflatable habitat development programs are discussed with their increasing maturation toward use on a flight mission. Selected development programs being discussed include several NASA Langley Research Center habitat programs that were conducted in the 1960s, the Lawrence Livermore National Laboratory inflatable space station study, the NASA JSC deployable inflatable Lunar habitat study, and the inflatable Mars TransHab study and test program currently ongoing at NASA JSC. Relevant technology developments made by ILC Dover are also presented.  相似文献   


11.
The paper elaborates on “ lessons learned” from two recent ESA workshops, one focussing on the role of Innovation in the competitiveness of the space sector and the second on technology and engineering aspects conducive to better, faster and cheaper space programmes. The paper focuses primarily on four major aspects, namely:
1. a) the adaptations of industrial and public organisations to the global market needs;
2. b) the understanding of the bottleneck factors limiting competitiveness;
3. c) the trends toward new system architectures and new engineering and production methods;
4. d) the understanding of the role of new technology in the future applications.

Under the pressure of market forces and the influence of many global and regional players, applications of space systems and technology are becoming more and more competitive. It is well recognised that without major effort for innovation in industrial practices, organisations, R&D, marketing and financial approaches the European space sector will stagnate and loose its competence as well as its competitiveness. It is also recognised that a programme run according to the “better, faster, cheaper” philosophy relies on much closer integration of system design, development and verification, and draws heavily on a robust and comprehensive programme of technology development, which must run in parallel and off-line with respect to flight programmes.

A company's innovation capabilities will determine its future competitive advantage (in time, cost, performance or value) and overall growth potential. Innovation must be a process that can be counted on to provide repetitive, sustainable, long-term performance improvements. As such, it needs not depend on great breakthroughs in technology and concepts (which are accidental and rare). Rather, it could be based on bold evolution through the establishment of know-how, application of best practices, process effectiveness and high standards, performance measurement, and attention to customers and professional marketing. Having a technological lead allows industry to gain a competitive advantage in performance, cost and opportunities. Instrumental to better competitiveness is an R&D effort based on the adaptation of high technology products, capable of capturing new users, increasing production, decreasing the cost and delivery time and integrating high level of intelligence, information and autonomy. New systems will have to take in to account from the start what types of technologies are being developed or are already available in other areas outside space, and design their system accordingly. The future challenge for “faster, better, cheaper” appears to concern primarily “cost-effective”, performant autonomous spacecraft, “cost-effective”, reliable launching means and intelligent data fusion technologies and robust software serving mass- market real time services, distributed via EHF bands and Internet.

In conclusion, it can be noticed that in the past few years new approaches have considerably enlarged the ways in which space missions can be implemented. They are supported by true innovations in mission concepts, system architecture, development and technologies, in particular for the development of initiatives based on multi-mission mini-satellites platforms for communication and Earth observation missions. There are also definite limits to cost cutting (such as lowering heads counts and increasing efficiency), and therefore the strategic perspective must be shifted from the present emphasis on cost-driven enhancement to revenue-driven improvements for growth. And since the product life-cycle is continuously shortening, competitiveness is linked very strongly with the capability to generate new technology products which enhance cost/benefit performance.  相似文献   


12.
This document outlines the objectives, strategy guidelines, and the approach for the harmonisation of European space technology activities, in line with and in support of the resolution “Shaping of the Future of Europe in Space”, adopted at the ESA Ministerial Council in May 1999.Under an overall ESA co-ordination, the European space sector is elaborating a technology strategy based on top-level priorities (Dossier 0), on the mapping of European development and competences and on a co-ordinated Space Technology Master Plan (ESTMP). This plan shall take into account the various European developments, industry capacities and budgets and shall enhance the complementary role of the various partners towards common objectives.The proposed strategy includes selection of priority activities as pilot projects for harmonisation. For these pre-selected pilot projects, agreements are required on responsibilities, leaderships, partnerships and budget commitments.  相似文献   

13.
Space-based astrometry has a great tradition at ESA. The first space-based astrometric satellite in history, “Hipparcos”, was launched by ESA in 1989 and, in spite of orbital problems, was able to accomplish almost all of its tasks until it was finally shut down in 1993. The results of the Hipparcos mission were published by ESA in 1997 in the form of six CD-ROMs: the Hipparcos Catalogue contains 118,218 entries with median astrometric precision of around 1 milliarcsec, and specific results for double and multiple systems. In practice, Hipparcos drew for the first time the three-dimensional “map” of the spherical region of the Galaxy surrounding the Sun and having a radius of roughly 1,000 light years.

Then, in 1995, ESA launched the study of a new astrometric satellite, named “GAIA” and about a hundred times more powerful than Hipparcos, i.e. with median astrometric precision of around 10 microarcsec. This new satellite is intended to measure the parallaxes of over 50 million stars in the Galaxy, at least for the brightest stars, and this would mean to “draw” the three-dimensional map of the whole Galaxy, reaching out even to the Magellanic Clouds, 180,000 light years away.

The team of European scientists and engineers now designing GAIA, however, is facing hard technological difficulties. One of these is the design and coding of radically new and ultra-powerful mathematical algorithms for the on-board compression of the 50-million-stars data that GAIA will send to Earth from its intended geostationary orbit. Preliminary estimates of the raw data rates from the GAIA focal plane, in fact, are of the order of a few Gigabits per second. To reduce the data stream to the envisaged telemetry link of 1 Megabit per second, on-board data compression with a 1 to 1,000 ratio is the target. Clearly, this is far beyond the capabilities of any lossless compression technique (enabling compression ratios of 1 to some tens), and so some “wise” lossy compression mathematical procedure must be adopted.

In this paper a GAIA-adapted lossy data compression technique is presented, based on the Karhunen-Loève Transform (KLT). The essence of this method was already used by NASA for the Galileo mission when the large antenna got stuck and the mission was rescued by re-programming the on-board computer in terms of the KLT. That transform was officially named ICT — “Integer Cosine Transform” — by the NASA-JPL team led by Dr. Kahr-Ming Cheung. But the KLT here described for GAIA will of course differ from the JPL one in many regards, owing to the advances in computer technology.

Finally, estimates are also given about the possibility of using the KLT for onboard data compression in case GAIA is going to be put into orbit around the Lagrangian point L2 of the Earth-Sun system, and, above all, in case the number of stars to be observed is actually raised from 50 millions to one billion, as ESA currently appears to be likely to pursue.  相似文献   


14.
The impact of confirmation of life outside the small ecosphere we call Earth will be profound on the terran population as a whole. The “Declaration Of Principles Concerning Activities Following The Detection Of Extraterrestrial Intelligence” and the IAA Position Paper “A Decision Process for Examining the Possibility of Sending Communications To Extraterrestrial Civilizations: A Proposal” provide a firm basis for the development of a new body of space law. It is important that space law design and prepare for implementation of a protocol to guide the nations of the world concerning the search for extraterrestrial intelligence (SETI), through the advice and cooperation of scientists, jurisprudential, philosophical, political and sociological scholars. Through the IAA, the IISL, the United Nations and other organizations, formal documentation should be drafted to encode the Declaration of Principles and IAA Position Paper referred to above. In this way, a body of metalaw can be developed to enable human communication with non-terrestrial life. This paper discusses the philosophical and sociological parameters of terran understanding of our place in the universe which will dramatically impact jurisprudential thought and action in light of the realization of the infinitesimally small niche that humankind occupies. A discussion of these interdisciplinary concerns will be necessary to realize a metalegal approach to interstellar communications and relations.  相似文献   

15.
Liquid-propellant rocket engines are widely used all over the world, thanks to their high performances, in particular high thrust-to-weight ratio. The present paper presents a general panorama of liquid propulsion as a contribution of the IAF Advanced Propulsion Prospective Group.After a brief history of its past development in the different parts of the world, the current status of liquid propulsion, the currently observed trends, the possible areas of future improvement and a summarized road map of future developments are presented. The road map includes a summary of the liquid propulsion status presented in the “Year in review 2007” of Aerospace America.Although liquid propulsion is often seen as a mature technology with few areas of potential improvement, the requirements of an active commercial market and a renewed interest for space exploration has led to the development of a family of new engines, with more design margins, simpler to use and to produce associated with a wide variety of thrust and life requirements.  相似文献   

16.
NASAs early efforts in satellite communications development brought confidence in space technology use for improved telecommunications. New, worldwide satellite communications systems have resulted, and are now on a commercial, self-sustaining operational basis. Since 1973, NASA has conducted hundreds of user experiments and demonstrated newer technology using ATS-1, -3, -6 and CTS. Now, projections show that the commercial demand will continue to increase, soon exceeding the current technology's capacity.As a result, U.S. Space Policy affirmed in 1978 that NASA should embark again on a research and development program for satellite communications with specific, characterized goals. The resulting plan's elements include 3020GHz Ka-band technology, extending the current work in advanced multi-beam antennas; a narrowband system and technology study that could lead to mobile and transportable communications developments; and studies of future uses of technology in communications. The program plan and its evolution are described, followed by a report of current progress and future expectations.  相似文献   

17.
The special theory of relativity rests on the assumption that in no case can the speed of light be exceeded. Rather surprisingly, however, recent advances in the general theory of relativity show that Faster-Than-Light (FTL) travel is allowed by Einstein’s gravitational theory. An explanation of this apparent contrast between special and general relativity lies in the fact that general relativity uses non-linear differential equations and non-Euclidean spacetime geometry that special relativity does not. Therefore, this larger mathematical armoury makes room for a whole new class of very subtle and unexpected relativistic phenomena to come to light. One of these is the Theory of Wormholes, more politely termed Tunnels into Space–Time. In 1988, Kip S. Thorne and Michael S. Morris published a path-breaking paper about Wormholes showing how spaceflight between two stars might be possible in a time of hours if a “tunnel” dug into space–time exists between them. However, they also showed that keeping the tunnel open for the spaceship to travel through would require a kind of matter, called “exotic” by them, that does not appear to exist in nature, because its tensional strength would have to exceed the energy density of its matter. This request is a severe constraint to the natural existence of Morris–Thorne Wormholes, or even to their artificial construction by an advanced civilization. In 1995, however, the present author sought to replace the exotic matter in a Morris–Thorne Wormhole by a very intense magnetic field. Such “Magnetic Wormholes” could indeed exist because very intense magnetic fields are already known to exist on the surface of neutron stars and pulsars. This paper discusses the consequences on SETI of the possible existence of Magnetic Wormholes. Phenomena of divergent gravitational lensing might possibly occur in the proximity of pulsars and neutron stars. These effects could help us detect signals from very far civilisations by virtue of ordinary SETI techniques already in use.  相似文献   

18.
The Small Explorer (SMEX) Project at NASA Goddard Space Flight Center (GSFC) has accumulated nearly a decade of experience building missions with the underlying philosophy of “Faster, Better, Cheaper” (FBC). Five satellites are now successfully operating on-orbit with only one serious instrument anomaly. Together this Project has accumulated 14.6 years of on-orbit experience without a spacecraft bus failure. Additionally, this project, under the Explorer Technology Infusion effort, has developed a protoflight version of a 21st Century FBC spacecraft bus that has just completed environmental qualification and has been selected at the base spacecraft for NASA's Triana mission. Design and production of these six high performance spacecraft, in just ten years time, has provided a unique base of experience from which to draw lessons learned. This paper will discuss the fundamental practices that have been used by the SMEX Project in achieving this record of success.  相似文献   

19.
John C. Mankins   《Acta Astronautica》2009,65(9-10):1190-1195
The current emphasis in the US and internationally on lunar robotic missions is generally viewed as a precursor to possible future human missions to the Moon. As initially framed, the implementation of high level policies such as the US Vision for Space Exploration (VSE) might have been limited to either human lunar sortie missions, or to the testing at the Moon of concepts-of-operations and systems for eventual human missions to Mars [White House, Vision for Space Exploration, Washington, DC, 14 January, 2004. [1]]. However, recently announced (December 2006) US goals go much further: these plans now place at the center of future US—and perhaps international—human spaceflight activities a long-term commitment to an outpost on the Moon.Based on available documents, a human lunar outpost could be emplaced as early as the 2020–2025 timeframe, and would involve numerous novel systems, new technologies and unique operations requirements. As such, substantial investments in research and development (R&D) will be necessary prior to, during, and following the deployment of such an outpost. It seems possible that such an outpost will be an international endeavor, not just the undertaking of a single country—and the US has actively courted partners in the VSE. However, critical questions remain concerning an international lunar outpost. What might such an outpost accomplish? To what extent will “sustainability” be built into the outpost? And, most importantly, what will be the outpost's life cycle cost (LCC)?This paper will explore these issues with a view toward informing key policy and program decisions that must be made during the next several years. The paper will (1) describe a high-level analytical model of a modest lunar outpost, (2) examine (using this model) the parametric characteristics of the outpost in terms of the three critical questions indicated above, and (3) present rough estimates of the relationships of outpost goals and “sustainability” to LCC. The paper will also consider possible outpost requirements for near-term investments in enabling research in light of experiences in past advanced technology programs.  相似文献   

20.
Joseph Lorenzo Hall   《Space Policy》2003,19(4):239-247
The National Aeronautics and Space Administration (NASA)—as the global leader in all areas of spaceflight and space science—is a unique organization in terms of size, mission, constraints, complexity and motivations. NASA's flagship endeavor—human spaceflight—is extremely risky and one of the most complicated tasks undertaken by man. It is well accepted that the tragic destruction of the Space Shuttle Challenger on 28 January 1986 was the result of organizational failure. The surprising disintegration of the Space Shuttle Columbia in February 2003—nearly 17 years to the day after Challenger—was a shocking reminder of how seemingly innocuous details play important roles in risky systems and organizations. NASA as an organization has changed considerably over the 42 years of its existence. If it is serious about minimizing failure and promoting its mission, perhaps the most intense period of organizational change lies in its immediate future. This paper outlines some of the critical features of NASA's organization and organizational change, namely path dependence and “normalization of deviance”. Subsequently, it reviews the rationale behind calling the Challenger tragedy an organizational failure. Finally, it argues that the recent Columbia accident displays characteristics of organizational failure and proposes recommendations for the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号