首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
重力对合金凝固过程与缺陷形成具有重要影响.在常规地面条件下难以清晰揭示凝固过程中的重力效应及其作用规律,而在微重力环境中重力对熔体的作用以及对凝固过程的影响大大降低.利用天宫二号空间实验并结合地面对比实验,研究AlCuMgZn单晶合金在微重力和重力环境下枝晶生长形貌和特征参数差异以及成分偏析和缺陷形成的异同,揭示重力对枝晶生长过程和成分偏析等现象的影响及其在凝固缺陷形成中的作用.  相似文献   

2.
天宫二号碲化锌晶体生长   总被引:1,自引:1,他引:0       下载免费PDF全文
在天宫二号飞船综合材料实验炉六工位采用碲熔剂法生长了碲化锌晶体,生长时最高温度为800℃,以0.5mm·h-1的提拉速度向炉膛内部提拉生长晶体.飞行实验后,用相同实验参数在地面进行了对比实验.结果发现,空间样品尾部有一个非常大的橙色结晶区域(约10mm×6mm×2mm),而地面生长样品中碲化锌晶体尺寸仅为约3mm×3mm×1mm,空间生长的碲化锌晶粒尺寸明显优于地面.空间微重力环境下,由于毛细作用,空间样品的塞子处有Te和ZnTe的外延膜生成.而地面生长的锭条在塞子处只有零星点状气相生产物.因此微重力条件有利于碲化锌晶体材料的生长.   相似文献   

3.
表面张力是材料重要的物理化学参数之一, 尤其在微重力条件下, 由表面张力引起的科学现象一直备受关注. 静滴法是地面重力条件下进行熔体表面张力测量的主要方法, 该方法的测量结果精确, 但在微重力环境下该法应用尚存在一些问题. 本文基于对表面张力理论的思考, 阐述了对其测量方法的认识和见解, 并讨论了地面上采用静滴法对熔体的表面张力进行测量研究以及静滴法在微重力条件下应用的困难. 进而介绍了利用悬浮技术进行熔体表面张力测量的无接触测量方法, 特别介绍了电磁悬浮法, 该法避免了由于容器接触带入杂质所引起的误差, 尤其在微重力条件下消除了重力的影响, 测量精度得到显著提高.   相似文献   

4.
1987年8月5日至10日,我国首次利用返回卫星进行了空间微重力下的材料加工实验。本次试验共有12个项目,其中砷化镓单晶生长达到国际先进水平,Y-Ba-Cu高温超导材料试验则为世界首次,HgCdTe红外材料,Insb半导体材料和难混合全都取得了地面不能得到的结果。这次试验的多用途加工炉吸收了国外空间加工技术的特点,构思巧妙、效果明显.一炉多用开创空间搭载的新路子。  相似文献   

5.
基于空间微重力下植物的生物学效应及其微重力信号转导研究需要,在微重力条件下培养拟南芥,获得经微重力条件生长的拟南芥样品.在空间实验过程中实时采集、存储和传输植物样品的数字图像,并根据生物样品的生长周期对生物样品进行低温固定和储存,再由返回式卫星带回地面,开展微重力植物生物学效应研究.   相似文献   

6.
为对微重力条件下固体材料着火和火焰传播特性进行研究,研制了实践十号(SJ-10)卫星固体材料燃烧实验装置.利用空间高真空条件,采用实验段内气体环境更新和控制技术,实现了在有限实验空间内对多个实验样品进行研究,并提供准确可控的实验环境条件(氧气浓度和气流速度).通过地面试验验证,该装置可通过实验样品、氧气浓度、气流速度、点火方式等实验参数的灵活组合,实现空间实验机会的充分利用和预定科学目标.   相似文献   

7.
为验证在轨质量测量仪在空间微重力环境下的性能指标和测量精度,依据测量仪测量原理,阐述了其地面校准方法,建立了地面校准系统,并工程化实现了地面校准装置,通过模拟水平二维微重力环境,验证其性能及测量精度.实验结果表明,该校准技术及校准装置系统的测量误差均在指标范围内,可应用于同类质量测量仪器在特殊环境下的地面校准,可推广性...  相似文献   

8.
微重力下相变储能单元融化过程数值模拟   总被引:2,自引:0,他引:2  
为探究微重力环境中,通过肋片强化了传热的相变储能单元中相变材料融化过程,通过数值模拟方法探究了微重力作用时相变材料融化过程中传热特性。通过地面实验与重力作用下数值模拟结果对比验证数值模拟方法的准确性,对比重力和微重力作用2种情况下数值模拟结果以揭示微重力环境中相变材料融化过程的特性。结果表明,当相变储能单元受微重力作用时,相变材料融化速率明显下降,热量主要通过热传导传递,融化的相变材料从顶端膨胀溢出向空间扩散,局部低温区域在相变储能单元中上部。   相似文献   

9.
随着载人航天事业的不断发展,空间失重环境引起的航天员健康问题(心血管疾病、免疫抑制、肌肉萎缩、骨质疏松等)日益突出,这已成为人类探索空间的一大阻碍.越来越多的研究关注到微重力条件下机体及细胞的变化.近期的研究表明,在细胞水平上,微重力会引起细胞降解,改变细胞骨架,并造成细胞在分子水平(如细胞增殖、分化、迁移、粘附、信号转导等过程)的一系列改变.本文对微重力条件下免疫细胞、内皮细胞、骨细胞、癌细胞的相关研究进行了归纳总结,研究结果可为微重力条件下机体及相关细胞的研究提供指导,为治疗或缓解微重力条件造成的疾病提供方法和思路.   相似文献   

10.
针对在微重力环境中运行的载人航天飞行器上的电缆和导线在工作时由于电流过载导致温度升高而引起着火的情况,提出了"功能模拟"实验原理,并且利用地面实验设备对微重力环境下导线的着火前期特性进行了功能模拟实验研究.通过实验,得到了在微重力情况下由于浮升力的减小使自然对流减弱导致电流过载时导线的热平衡温度高于地面正常重力情况,从而证明了这正是引起航天飞行器着火的潜在点火源.   相似文献   

11.
This paper describes the construction and performance of a VUV-simulator that has been designed to study degradation of materials under space conditions. It is part of the Complex Irradiation Facility at DLR in Bremen, Germany, that has been built for testing of material under irradiation in the complete UV-range as well as under proton and electron irradiation. Presently available UV-sources used for material tests do not allow the irradiation with wavelengths smaller than about 115 nm where common Deuterium lamps show an intensity cut-off. The VUV-simulator generates radiation by excitation of a gas-flow with an electron beam. The intensity of the radiation can be varied by manipulating the gas-flow and/or the electron beam.  相似文献   

12.
卫星柔性热控材料性能及其稳定性研究   总被引:5,自引:0,他引:5  
阐述热控材料的性能以及它在空间模拟环境下的稳定性。测试表明所镀制的立品其光、热、电性能很好,且在模拟空间环境下,如电子辐照、紫外辐照、原子氧作用以及湿热环境下其稳定性能优良。AFM分析表明,镀膜方法和工艺对制备高质量TO膜和高反射Al膜十分重要。  相似文献   

13.
Hypergravity stimuli, gravitational acceleration of more than 1 x g, decrease the growth rate of azuki bean epicotyls and maize coleoptiles and mesocotyls by decreasing the cell wall extensibility via an increase in the molecular mass of matrix polysaccharides. An increase in the pH in the apoplastic fluid is hypothesized to be involved in the processes of the increase in the molecular mass of matrix polysaccharides due to hypergravity. However, whether such physiological changes by hypergravity are induced by normal physiological responses or caused by physiological damages have not been elucidated. In the present study, we examined the effects of the removal of hypergravity stimuli on growth and the cell wall properties of azuki bean and maize seedlings to clarify whether the effects of hypergravity stimuli on growth and the cell wall properties are reversible or irreversible. When the seedlings grown under hypergravity conditions at 300 x g for several hours were transferred to 1 x g conditions, the growth rate of azuki bean epicotyls and maize coleoptiles and mesocotyls greatly increased within a few hours. The recovery of growth rate of these organs was accompanied by an immediate increase in the cell wall extensibility, a decrease in the molecular mass of matrix polysaccharides, and an increase in matrix polysaccharide-degrading activities. The apoplastic pH also decreased promptly upon the removal of hypergravity stimuli. These results suggest that plants regulate the growth rate of shoots reversibly in response to hypergravity stimuli by changing the cell wall properties, by which they adapt themselves to different gravity conditions. This study also revealed that changes in growth and the cell wall properties under hypergravity conditions could be recognized as normal physiological responses of plants. In addition, the results suggest that the effects of microgravity on plant growth and cell wall properties should be reversible and could disappear promptly when plants are transferred from microgravity to 1 x g. Therefore, plant materials should be fixed or frozen on orbit for detecting microgravity-induced changes in physiological parameters after recovering the materials to earth in space experiments.  相似文献   

14.
Poor growth and nuclear abnormalities observable in some space-grown plants have been hypothesized as due to a combination of factors such as degree of development, the specific way the plants are grown and the way they experience multiple stresses, some of which are space-specific. Data from a 132-day experiment on ‘Mir’ using embryogenic cell cultures of daylily (Hemerocallis) allow seemingly contradictory evidence from earlier Shuttle missions to be harmonized: a) the more developed an embryo the less likely it is to suffer catastrophic cell stress during growth, whereas the less developed it is, the greater its vulnerability; (b) the extent to which the stress becomes manifest is also dependent on the extent of pre-existing stresses imposed by suboptimal growing conditions; (c) an appropriate, albeit undesirable, ‘stress match’ with other non-equilibrium determinants, much like a ‘tug of war’, can result in genomic variations in space. It is not understood what is/are the feature(s) of the space environment that cause the various cell division perturbations but they have not yet been mimicked on earth. The stress symptoms were found only in space materials and, as predicted, they were most frequently encountered in smaller, less-developed materials grown under non-optimized conditions. It is concluded that, while any substantial deviation from ‘optimum’ can be a ‘stress’, spaceflight subjects vulnerable materials to cell division or DNA-repair stress(es) that appear distinctive, but remain elusive so far. Fastidiously-controlled growing environments must be devised to resolve the matter of direct versus indirect effects of space. On a practical level, it is predicted that adapting plant biotechnologies to space conditions will not be a casual matter.  相似文献   

15.
Fluid transport models for fluxes of water vapor and CO2 have been developed for one crop of wheat and three crops of soybean grown in a closed plant growth chamber. Correspondence among these fluxes is discussed. Maximum fluxes of gases are provided for engineering design requirements of fluid recycling equipment in growth chambers. Furthermore, to investigate the feasibility of generalized crop models, dimensionless representations of water vapor fluxes are presented. The feasibility of such generalized models and the need for additional data are discussed.  相似文献   

16.
Using electroncytochemical and biochemical methods, differences between the cytochemical reaction intensity and activity of the cellulosolytic enzymes in Funaria hygrometrica moss cells grown for 30 days in the horizontal clinostat (2 rev/min) and in control have been studied. It has been shown that on clinostating the precipitate amount and size increases with the cellulase activity enhancement in the periplasmic space and protonema cell walls, when compared to control. Using biochemical methods it has been found that the activity of both endo-1,4-beta-glucanase and exo-1,4-beta-glucanase was higher under these conditions. A decrease of cellulose total content, its crystalline form, and pectic substances as well as an increase of hemicellulose content have been revealed in the clinostated material compared to control. Data obtained are discussed regarding the possible mechanism of cellulase activation and synthesis inhibition and cellulose crystallization in plant cell walls at clinostating.  相似文献   

17.
The crystal growth under near-zero gravity conditions may lead to materials of better crystalline and compositional perfection [1]. Unidirectional solidification of metals is a part of Czechoslovak programme on space research within the framework of Interkosmos [2]. On the model-like systems of metals grown in the space we want to study the effect of foreign atoms on the surface tension and the lattice defects density. The objectives of our ground-based and space experiments are discussed.  相似文献   

18.
The low-gravity environment aboard the space provides a unique platform for understanding crystal-growth-related phenomena that are masked by gravity on the Earth and for exploring new crystal growth techniques. We have characterized the wetting behavior of metal alloys and carried out melt growth of compound semiconductors under the support of materials science program in the SJ-10 recoverable satellite. We found that interfacial reaction plays a significant role in the interfacial evolution of Sn-based alloys. Detached growth of InAsSb was realized under microgravity, whereas during the terrestrial experiment the crystal and the crucible wall contact with each other. Moreover, the suppression of buoyancy-driven convection results in a more uniform composition distribution in the InGaSb and Bi2Te3-based semiconductor alloys.   相似文献   

19.
Airtight vessels have various advantages for space experiments. However, Arabidopsis thaliana plants scarcely produced seeds when grown in such vessels. The mechanism by which reproductive growth is inhibited in airtight vessels was studied. The length of the flower stalk was shorter when the plants were grown in airtight vessels. Thus, there was a possibility that the inhibition of reproductive growth was due to the inhibition of vegetative growth. However, even when the plants which has grown under non-airtight conditions and has reached to the flowering stage were transferred to airtight vessels, silique formation was inhibited, suggesting that the airtight environment directly influences reproductive growth. In airtight vessels, anther dehiscence was inhibited, which appears to be the cause of inhibition of silique formation and seed development. Reproductive growth recovered when silica gel was added to the vessels. These results suggest that in airtight vessels, high humidity causes a suppression of anther dehiscence, resulting in the inhibition of reproductive growth. Therefore, the control of humidity by ventilation should be taken into consideration in designing a growth chamber for space experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号