首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
出口封闭的冲压发动机进气道激波振荡现象   总被引:3,自引:3,他引:0  
采用计算流体力学和风洞试验两种手段,对冲压发动机出口封闭的多种超声速进气道内通道气流振荡现象进行了研究。结果表明,在一定的超声速范围内,封闭的进气道内通道发生了较强气流振荡现象,振荡频率、幅值和内通道长度、飞行马赫数有关,该振荡现象是一种自激振荡现象。利用亥姆霍兹共振器频率公式可以对封闭的进气道内通道振荡频率进行预估,并对其归纳出一种修正方法,可以结合模型试验结果对进气道和燃烧室内流振荡频率和幅值进行分析,为飞行试验提供预估和参考。  相似文献   

2.
异形腔体压电声衬声学性能   总被引:2,自引:2,他引:0  
为提高压电声衬对低频噪声的抑制范围,对声衬腔体进行结构优化。利用平面波理论构建了两种曲线管道的声学物理模型,并分别建立了两种模型的传递矩阵,以此作为异形腔体亥姆霍兹共振器传递损失计算的理论依据,并通过仿真验证其正确性。结合压电振子的形变对声衬进行有限元仿真分析,结果表明:在压电振子施加500V驱动电压时,两种声衬频率偏移量分别为115Hz和120Hz。与圆柱形腔体声衬进行对比结果表明:在相同腔体厚度范围内,由曲率越大的曲线所生成的腔体,在相同驱动电压条件下,频率变化率越高,这为今后对声衬腔体结构优化提供一种有效的依据。   相似文献   

3.
余志健  杨旸 《推进技术》2023,(1):174-186
为考察运行参数对火焰描述函数的影响,及验证结合火焰描述函数的燃烧室热声不稳定数值预测方法可行性,测量了一燃气轮机典型旋流部分预混火焰不同运行参数下的火焰描述函数,并结合该实测火焰描述函数及热态阻尼率,采用亥姆霍兹法数值预测了燃烧室自激热声振荡参数。结果表明,该旋流部分预混火焰的火焰描述函数具有低通和带通增益峰,随激励振幅增加,增益不断降低;相位值与频率基本呈线性关系。当量比较低时,火焰描述函数主要呈现火焰拉伸效应引起的低通增益峰;随当量比增加,低通增益逐渐减弱,涡脱落效应引起的带通增益峰逐渐加强。随空气流量增加,火焰描述函数高增益频率带明显拓宽,而高增益对应的施特劳哈尔数St边界变化较小,增益峰均位于St=0.23和0.80附近。结合实测火焰描述函数、热态有火焰下阻尼率及温度分布,亥姆霍兹法数值预测的特征频率相对误差约10%,速度振幅比绝对误差在0.05以下。  相似文献   

4.
空腔噪声为气动噪声领域中重要的一部分,声衬作为一种有效的降噪措施,其原理为微穿孔板吸声体,即多个亥姆霍兹共鸣器并联,通过激发背腔共振吸收声能。声衬的吸声效果受到多个结构参数的影响,针对低速空腔气动噪声问题,通过微穿孔板吸声体原理对声衬进行多参数混合设计,并将其加装到空腔中,对比加装声衬前后空腔噪声的频谱特性,评估声衬在空腔噪声问题中的降噪效果,分析加装声衬对空腔噪声的自激振荡及声共振产生的影响。  相似文献   

5.
针对电子束偏转扫描频率低以及扫描线圈磁场不均匀的问题,研究了电子束在磁场中的运动原理,设计了基于亥姆霍兹线圈的电子束偏转扫描线圈,并研究了相应的驱动电路。由电子枪的结构尺寸及亥姆霍兹线圈的基本原理设计了扫描线圈,由电子枪加速电压、工作距离及所需偏转范围确定了所需磁场强度,并进一步计算了安匝数。设计了基于PID控制的高频扫描驱动电路。结果表明,所设计的电子束偏转扫描线圈的磁场强度均匀性高,其驱动电路性能稳定,流过扫描线圈3A电流高达30kHz。  相似文献   

6.
双局域共振效应声学超材料消声性能   总被引:1,自引:1,他引:0  
为了有效控制低频宽带噪声,提出了一种基于亥姆霍兹共振器的双局域共振效应声学超材料。声学超材料将亥姆霍兹共振效应与弹簧质量共振效应结合,通过驱动电压控制薄膜变形,实现两个系统的共振频率同时发生变化。在建立系统数学模型的基础上,计算得到亥姆霍茨共振系统固有频率为4141 Hz,柔性薄膜系统固有频率为2868 Hz,与柔性薄膜的共振频率理论计算偏差为44%,与亥姆霍兹共振腔的共振频率理论计算偏差为097%。利用COMSOL软件的声固耦合物理场研究了声学超材料的声学性能,采用双负载法对声学超材料进行测试。结果表明:该声学超材料在低频范围内有良好的噪声控制效果,产生两个传递损失峰值,形成了双局域共振效应,可以同时对两个频率范围内的噪声进行控制。当驱动电压从0 V增加至350 V时,弹簧质量系统传递损失峰值频率从30 Hz偏移到110 Hz,变化率为228%,可以实现噪声的自适应控制,为声学超材料主动控制及优化提供一种方法。  相似文献   

7.
通过采用声学有限元法,求解带有平均流源项的亥姆霍兹方程,进而在考虑燃烧室高温、平均流场因素基础上分析了隔板结构参数对液体火箭发动机燃烧室声学模态特性影响规律。结果表明:增加隔板数目或长度,均会降低燃烧室1阶切向模态的特征频率;存在最佳隔板数目4,使燃烧室1阶切向模态阻尼率最大;而隔板长度越长,1阶切向模态声压波腹的分布面积越小,阻尼率越大;隔板型式对燃烧室1阶切向模态特性影响较小。  相似文献   

8.
基于热声网络法的燃烧不稳定性分析研究   总被引:4,自引:3,他引:1       下载免费PDF全文
杨甫江  郭志辉  付虓 《推进技术》2014,35(6):822-829
为研究预混燃烧的燃烧不稳定性,采用低阶热声网络分析方法确定燃烧不稳定性的模态特征及非线性特性。在热声网络程序中利用声网络来描述燃烧室结构的声学特性,利用速度脉动的函数描述火焰的热释放脉动。在火焰模型中,在线性模型中增加非线性以求解不稳定模态的极限环幅值。分析了钝体模型燃烧室中火焰模型参数对燃烧不稳定性的影响,模拟结果与实验结果符合得很好。结果表明声网络方法结合非线性火焰模型能描述燃烧系统的燃烧不稳定性和直接预测极限环幅值。  相似文献   

9.
为了探究高背压水介质条件下,固体火箭发动机垂直气体射流在浮力影响下的流场结构和发动机推力特点,建立了轴对称几何模型,在考虑有/无浮力的条件下,采用VOF(Volume of Fluid)多相流模型进行气体-水两相耦合仿真计算,获取尾流气体射流流场结构,以及发动机尾部壁面受力和推力振荡曲线进行分析。研究结果表明,考虑浮力的仿真结果更加符合试验结果;射流动量段气体的马赫数分布会导致喷管出口附近的气-水界面产生周期性胀鼓-颈缩,从而引起尾部空间背压振荡,在设计工况下,尾部压力变化范围为环境水深压强的0.327到2.43倍;背压振荡将引起尾壁面受力振荡和推力振荡,振荡频率为736.89Hz;气体射流喷出过程中,气-水界面由速度梯度主导的开尔文-亥姆赫兹(K-H)不稳定性逐渐转变为由重力和浮力主导的瑞利-泰勒(R-T)不稳定性。  相似文献   

10.
利用NS方程和飞行力学方程耦合的数值模拟,研究分析了窄条翼导弹模型摇滚运动的动力学特性和产生机理。控制方程为URANS和刚体单自由度转动方程,计算取Roe格式、SA湍流模型、双时间步法,气动/运动耦合采用双时间步三阶Adams预估校正法。计算Ma=0.6,α=35°,模型进入极限环振荡,振幅10.14°,周期20Hz,与风洞试验结果吻合较好。受力分析表明力矩迟滞曲线为双8环,中间为不稳定环,两侧为稳定环;模型的动不稳定性是由迎风尾舵引起,背风尾舵不能提供足够的动稳定性,导致模型丧失滚转阻尼,最终进入等幅等周期的极限环振荡;计算证实,该极限环是稳定的,模型在任意初始状态或微扰动作用下都将进入该极限环振荡。计算结果还表明,在非定常效应较强时,转动惯量对摇滚振幅影响不大,对频率影响明显。  相似文献   

11.
含浮环式挤压油膜阻尼器的转子系统响应分析   总被引:1,自引:3,他引:1  
针对浮环式挤压油膜阻尼器,研究了阻尼器特性;建立了含浮环式挤压油膜阻尼器转子系统的动力学模型,模型考虑了转子与浮环式挤压油膜阻尼器两层油膜之间的相互耦合作用.利用数值仿真分析了系统的动力特性及其他影响因素,仿真结果表明:浮环式挤压油膜阻尼器能有效抑制系统双稳态响应,选择一个质量适当的浮动环,有利于转子高速运转的稳定.利用含浮环式挤压油膜阻尼器的转子动力学试验台,验证了仿真结果的正确性.   相似文献   

12.
缘板摩擦阻尼器的减振实验研究   总被引:15,自引:5,他引:10  
对叶轮机叶片缘板金属摩擦阻尼器进行了实验研究。着重研究了摩擦阻尼器对叶片的一阶弯曲振型的影响。研究表明,利用金属摩擦阻尼器可以有效地降低叶片的振动;通过合理选择阻尼器的质量(即正压力),可以最大限度地降低叶片的弯曲振动应力,即存在一最优正压力;并且随着激振力的增加,这一最优正压力也将随之增加。因此,它是叶轮机械中一种非常简单有效的减振措施。   相似文献   

13.
胡国才  柳泉  刘湘一 《航空学报》2010,31(11):2182-2188
 分析了某采用定压阀和补油装置的液压阻尼器的非线性特性。对无铰式模型旋翼的地面共振稳定性进行了数值仿真研究,分析了两种不同的非线性液压阻尼器对地面共振稳定性的影响。结果表明:由于补油分配阀间隙的影响,阻尼器低速时的有效阻尼大大下降;在无阻尼器的模型旋翼稳定的转速区内,该阻尼器不能改善系统小扰动情况时的动稳定性;在无阻尼器的模型旋翼不稳定区内,系统将出现极限环,且极限环幅值随补油分配阀间隙的增大而增大。研究结果对液压阻尼器的设计具有参考价值。  相似文献   

14.
崔颖  罗乔丹  邱凯  黄宇熙 《航空动力学报》2021,36(12):2474-2481
为研究两端密封型挤压油膜阻尼器流场与阻尼特性,建立了涨圈密封挤压油膜阻尼器三维非定常流场数值仿真模型。基于Fluent软件中的Mixture多相流模型和Schnerr-Sauer空化模型数值模拟得到动态油膜压力与气相体积分数的周向分布规律。将计算得到的阻尼器油膜压力与文献中的试验数据对比,结果显示:两者具有较高的一致性。由动态油膜力导出的平均等效阻尼系数与试验采用阻抗法识别的结果相比仅有0.6%的偏差,从而验证了该数值模型与预测方法的有效性。进一步的数值计算表明增大进动半径、进动频率、涨圈密封的狭缝宽度均会使挤压油膜阻尼器流场中的空化现象加重,同时等效阻尼系数降低。   相似文献   

15.
本文介绍了我所研制直升机旋翼粘弹阻尼器的简要过程,并结合研制中的“板式”和“扭转”型粘弹阻尼器的设计,简要概述了这两种典型结构参数的确定过程及其试验结果。经过两种型号四种粘弹阻尼器的研制证明其工程设计方法可行有效,作为一种工程设计方法的应用具有较大的实用价值,对相关专业工程设计也有其借鉴作用。  相似文献   

16.
直升机旋翼叶间减摆器的参数影响分析   总被引:4,自引:2,他引:2  
胡国才  向锦武 《航空学报》2004,25(6):581-584
建立了带叶间减摆器的直升机旋翼/机体耦合非线性动力学分析模型,针对具有线性特性的叶间减摆器,采用数值模拟及时域方法分析了直升机前飞状态下旋翼/机体耦合动稳定性及减摆器载荷,并就减摆器布局、几何参数对系统动稳定性及减摆器载荷的影响进行了分析。研究发现,"叶间"布局引起的几何耦合对减摆器载荷及系统的动稳定性有很大的影响,合理选择减摆器安装支臂的长度及其与桨毂平面之间的夹角,可以有效地利用几何耦合的因素。与基本模型相比,它能使系统的模态阻尼提高50%以上,而同时使减摆器的定常循环载荷的幅值下降60%左右。  相似文献   

17.
非线性叶间黏弹减摆器对直升机空中共振的影响分析   总被引:3,自引:2,他引:3  
王波  李书  张晓谷 《航空学报》2007,28(3):550-555
 建立带非线性叶间黏弹减摆器的直升机旋翼/机体耦合动稳定性分析模型。与全机飞行力学平衡计算相结合,旋翼/机体耦合动稳定性分析模型考虑前飞状态桨叶变距操纵、机体姿态角和桨毂纵向安装角。针对具有非线性特性的叶间黏弹减摆器,采用基于复模量的非线性VKS改进模型、Simulink时域仿真和多桨叶坐标变换等效阻尼识别法分析直升机悬停、前飞状态下旋翼/机体耦合动稳定性及减摆器双频动幅值,并就减摆器布局、全机总重以及前飞速度对桨叶摆振后退型模态阻尼的影响进行分析。结果表明:由悬停到前飞直升机动稳定性一般均下降,一定速度后又上升;加上减摆器能消除前飞不稳定区;叶间黏弹减摆器抬头连接能提高模态阻尼。  相似文献   

18.
本文以5片桨叶的叶间减摆器旋翼直升机为例,计算了一个减摆器失效时旋翼与机体耦合稳定性,比较了失效与不失效时旋翼摆振频率、阻尼和振型的变化,分析了由此引起的“地面共振”和“空中共振”的变化特点及其变化机理,提出了避免或消除失效可能导致“地面共振”的设计方法。  相似文献   

19.
樊伟  郑联语  赵雄  杨毅青  刘新玉  杨森 《航空学报》2019,40(9):422859-422859
大飞机垂尾装配界面是由钛合金制成的大型结构件,由于结构刚度低,在精加工时易产生振动、回弹变形和让刀等现象,对其精加工质量造成严重影响。为此,基于电磁感应原理设计了一款新型电涡流阻尼器用于抑制装配界面精加工中的多模态振动。首先,介绍了阻尼器的结构,并建立了其阻尼特性的理论模型。然后,基于该模型分别研究了不同磁极厚度、导体厚度和磁极数等对阻尼器阻尼特性的影响,并确定了阻尼器关键零组件的材料及几何参数。基于此,建立了装配界面抑制系统的动力学模型,并通过数值分析和有限元仿真方法得到了装配界面振动速度与阻尼器阻尼特性的变化规律。最后,通过动力学测试和切削实验对阻尼器的抑振性能进行了验证。锤击测试结果表明该阻尼器能明显提高装配界面抑振系统的阻尼比和等效刚度,阻尼比最大能提高2.17倍,等效刚度最大能提高1.65倍,能大幅衰减装配界面在冲击激励下产生的自由振动。切削实验结果表明该阻尼器能显著提升装配界面精加工过程的稳定性,装配界面时域信号的振动幅值最大能降低64.4%。通过对比实验结果得知双阻尼器配置对装配界面的抑振效果更好,能明显提高其动态可加工性,工艺参数轴向切深能提高至2.0 mm,主轴转速可提升至500 r/min,这为保证和提高装配界面的精加工质量提供了一种简单可行的解决方案。  相似文献   

20.
为有效解决篦齿封严装置在设计和使用中出现的振动过大的问题,提出了带阻尼套筒篦齿封严装置的动力响应分析方法,并对篦齿封严装置转子件在摩擦片不同分布位置时的动力响应进行了计算分析,得到了减振效果随摩擦片不同分布位置的变化规律。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号