首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 441 毫秒
1.
随着飞行器速度的进一步提高以及对可重复使用飞行器的需求,高超声速气膜冷却技术已经成为航空航天技术发展的热点问题。开展高超声速飞行器主动气膜冷却技术研究,对于解决高超声速飞行器面临的热防护问题,突破防热技术瓶颈,有十分重要的意义。本文在对主动冷却热防护技术原理、分类及其机制进行系统研究的基础上,从实验研究和数值模拟两个维度,对二维槽缝气膜孔工艺、离散气膜孔工艺和高超声速逆向喷流技术等高超声速气膜冷却技术以及影响气膜冷却效果的因素的研究现状进行了梳理和分析,进而提出了高超声速气膜冷却技术的防热材料研制、材料制备工艺、多气膜孔特性实验研究、逆向喷流气膜孔冷却技术实验验证等研究方向。  相似文献   

2.
涡轮叶栅超声速流场流动特征与气膜冷却特性   总被引:3,自引:1,他引:2  
应用shear strain transport(SST) k-ω 两方程湍流模型,对超声速涡轮叶栅通道内气膜冷却特性进行数值研究,得到不同气膜孔倾角和吹风比下叶栅通道内流场流动特征以及气膜冷却效率的变化规律.在激波入射点附近的气膜射流能够向分离区边界层中补充动量,克服逆压力梯度,有效改善由于激波引起的局部过热.亚声速流动状态下的气膜入射角度对冷却效率的影响能够在较大吹风比下得以体现,而超声速主流状态下,气膜冷却效率与入射角度基本无关,说明亚声速的气膜冷却射流对超声速主流的穿透力要弱于对亚声速主流的穿透力;超声速主流条件下,在激波入射位置的气膜冷却效率要高于激波入射位置下游的气膜冷却效率,这与气膜孔出流在当地的湍流度有关.   相似文献   

3.
不同孔型对高超声速逆喷流气膜冷却影响   总被引:1,自引:1,他引:0  
主要对不同孔型在不同质量流量下对高超声速逆喷流气膜冷却影响规律开展研究,得到不同孔型对气膜冷却效果的影响规律。采用CFD计算方法,对飞行高度为50 km,飞行马赫数为15条件下圆柱孔、收缩孔、扩张孔、收缩-扩张孔4种孔型开展研究。研究显示:小流量供气时,收缩孔和圆柱孔会出现长穿透模态(LPM)工作状态,扩张孔和收缩-扩张孔则不会出现;随着喷流流量的增大,喷流会从LPM转向短穿透模态(SPM),此时继续增大气膜喷流流量,并不会显著增大冷却收益。综合整个流域的变化,扩张孔在高超声速飞行器头部逆流喷流气膜冷却中是比较稳定可靠的气膜冷却孔。  相似文献   

4.
邓有奇  吴晓军  郑鸣  周乃春 《推进技术》2005,26(5):417-419,433
为了解横向喷流的干扰影响和喷口附近的流场结构,采用分块对接网格和“0”型网格技术,数值求解N—S方程来模拟超声速和高超声速流场中横向喷流的干扰流场。对两种尖拱弹身外形的超声速和高超声速喷流干扰流场进行了数值计算,计算结果与风洞实验数据吻合一致。在此基础上,开展了某型导弹多喷构型干扰流场的数值模拟,得出一些横向喷流数值模拟的结论。  相似文献   

5.
由于缺乏对某些重要流动特征的考虑,针对不可压流发展的标准SST湍流模型在描述超声速流场时存在明显的局限性。为改善SST模型在吸气式高超声速推进系统内流等复杂超声速流场中的预测精度,基于流动特征结构定向开展了激波和可压缩效应改进。通过激波/湍流边界层判别函数和可压缩效应判别函数定位标准SST模型参数或建模假设失效的区域,针对性地改进湍流模型。采用超声速平板边界层流动、超声速压缩拐角分离流动、超声速隔离段复杂激波串流动以及HIFiRE-2超声速内流等算例进行了测试,结果表明改进模型具有与标准SST模型一致的边界层预测能力,但显著提高了对激波干扰流动及逆压分离流的预测精度。  相似文献   

6.
王强  张丁午  胡海洋 《推进技术》2014,35(5):577-583
为了提高显式代数雷诺应力模型在高超声速流场中的计算精度,以修正后的CG k-ε模型作为湍流时间尺度决定方程,将Wallin和Johansson显式代数雷诺应力模型(WJ2000模型)应用于超声速/高超声速流场数值计算,并与线性湍流模型的计算结果进行了对比分析。结果表明WJ2000模型对高超声速压缩拐角附近壁面压力和热流分布的预测要优于线性湍流模型,同时网格依赖性明显低于后者;对CG k-ε湍流时间尺度决定方程所做修正不影响WJ2000模型对超声速流场的预测结果,但使其对高超声速流场的预测精度明显提高。  相似文献   

7.
超声速底部喷流干扰流场数值模拟   总被引:1,自引:0,他引:1  
数值模拟了不同马赫数,不同喷流压比下的轴对称超声速底部喷流干扰流场,采用LU隐式算法进行数值求解并引入了Baldwin-Lomax代数湍流模型.采用分区网格将弹身与底部区域合为一个整体进行计算,得到了清晰的流场结构和弹体表面及底部的压力分布,并与试验结果进行了比较.数值模拟结果表明超声速底部喷流干扰流场结构复杂,有、无喷流时底部流场有很大不同, 喷流对底压分布有明显影响,进而对轴向力系数影响显著.  相似文献   

8.
采用大涡模拟方法对钝头双锥喷流致冷流场开展了数值模拟,研究了超声速喷流混合流场结构特征及密度脉动特性。大涡模拟方法基于隐式亚格子模型,空间离散采用高精度通量限制型紧致格式,时间推进采用显式Runger-Kutta方法。数值模拟清晰地捕捉到了流场波系结构,精细地预测了流动发生失稳、转捩以及发展为充分发展湍流的物理过程,直接获得了流场密度脉动特性。通过有、无喷流状态对称面流场的对比,发现超声速喷流能够有效冷却光学窗口;喷流与主流形成的混合层不稳定,很快发生失稳和转捩,形成大尺度湍流结构,进而引起强烈的密度脉动。此外,获得了钝头双锥整体模型喷流致冷流场的空间发展形态特征。   相似文献   

9.
为进一步提高燃气轮机叶顶区域的气膜冷却效率,在叶顶模型结构上对4种叶顶冷却结构的流动和传热进行了数值模拟,结果显示带有盖板的水平喷流结构能够有效地提高叶顶区域的气膜冷却效率,对于圆孔,可以将气膜冷却效率提高至原来的2倍以上.通过流场的分析发现:水平喷流结构可以调整冷却工质的流动,使得冷却工质的贴壁性更好、分布更加均匀,进而提高气膜冷却效率.此外还研究了间隙宽度、盖板尾缘厚度、盖度和整流栅对水平喷流结构气膜冷却效率的影响.结果表明:增加盖度和减小间隙宽度可以提高气膜冷却效率,但是盖度和间隙宽度的选取受到了强度、工艺和冷却工质入口压力等因素的限制.水平盖板结构的冷却效果比倾斜盖板结构的好.整流栅足够长时可以调整流动、提高气膜冷却效率.   相似文献   

10.
冯峰  郭力  王强 《航空学报》2016,37(11):3273-3283
针对马赫数为1.95的欠膨胀超声速喷流声辐射特性,采用高精度计算格式的大涡模拟(LES)方法进行数值研究。通过对喷流平均流及湍流脉动统计结果的对比,确定数值方法的精确性。细致分析了超声速喷流流动特征,特别关注了其中激波胞格和湍流相互作用现象。基于流动与声场辐射间的关联性,分析了超声速喷流马赫波、宽频激波噪声辐射特性及形成机理。数值结果表明超声速喷流的剪切层演化及激波胞格与湍流间的相互作用构成欠膨胀超声速喷流的主要噪声源。  相似文献   

11.
以平行入射缝槽气膜冷却为研究对象,开展了主、次流分别为亚声速和超声速流动状态下的气膜冷却数值模拟。计算结果表明:对于主流为超声速、次流为亚声速的气膜冷却,主流热量和动量很快就输运到亚声速次流中,气膜核心区很快被破坏,气膜冷却效率不高;在主流为超声速流动的情况下,施加相同吹风比的超声速冷却次流可将其核心向下游更远的地方输运,与常规的亚声速气膜冷却结构类似。为了获得较高的气膜冷却效率,在主流为超声速流动的情况下,建议施加超声速次流进行气膜冷却。  相似文献   

12.
带有横喷控制的导弹流场数值模拟   总被引:2,自引:0,他引:2  
从包含多种组分的N-S方程出发,考虑两方程湍流模型,采用NND2M差分格式,对带有横向喷流的双锥旋称体高超声速绕流场进行数值模拟,计算结果与已有的试验数据进行对比,符合较好。在此基础上对带有横向喷流控制系统、型尾翼布局、高超声速飞行的导弹外流场进行数值模拟,研究了迎角、多个喷口、热喷流效应和湍流模型对气动力特性的影响;计算表明在无尾翼情况下有/喷流的气动力差别较小,喷流影响随迎角变化不敏感;对带有尾翼的气动布局,喷口位于背风区时喷流影响较小,喷口位于迎风面时气动力变化较大,压心明显前移;多喷口产生的附加推力和力矩不等于每个单喷口线性相加;湍流模型和热喷流效应引起流场结构改变,但是对总的气动力影响不大。  相似文献   

13.
战斗机后体流场数值模拟与减阻优化设计   总被引:1,自引:0,他引:1  
采用数值计算方法模拟零迎角跨声速来流下战斗机后体流场,并进行后体外形的减阻优化设计。通过数值求解二维轴对称Navier-Stokes方程、k-ωSST湍流模型和气体组分方程,研究战斗机后体绕流与尾喷流相互耦合的流场特性,对三种欠膨胀喷管压比下的喷流进行数值模拟,同时对比多组分气体喷流和理想气体喷流对后体阻力的影响。采用梯度法对轴对称后体外形进行减阻优化设计,提出一种优化设计加速算法,其基本思路是通过逐步增加设计控制点个数并根据外形曲率合理分布设计控制点的位置,从而改善梯度法的优化效率。计算结果发现,超声速喷流会在后体尾部附近形成复杂的波系结构;与组分气体喷流相比,采用理想气体作为喷流介质时的后体阻力系数略高;在跨声速来流状态下,后体阻力系数值随喷压比的增大而减小。优化结果显示,优化后的的后体阻力系数可以降低13%左右;与一次性均匀分布优化控制点的梯度法优化方法相比,采用提出的优化加速算法可以缩短优化计算时间40%左右,并且可以提高优化设计的精度。  相似文献   

14.
采用基于窄带热色液晶测量的瞬态全表面传热测量技术,研究了不同主流湍流度下的吹风比对涡轮导向叶片气膜冷却的影响,获得了叶片吸力面侧圆柱形孔排气膜冷却效率和表面传热系数比的全表面分布数据。结果表明:由于气膜射流与主流掺混的相互作用会随着主流湍流度的变化而变化,因此在主流湍流度不同时,吹风比对气膜冷却效率和表面传热系数比的影响规律会有所不同;主流湍流度较小时,吹风比的增大会显著减弱气膜覆盖效果与气膜冷却效率,但是在大湍流度下,吹风比的影响较弱,尤其是在远下游区域;相同的主流湍流度条件下,吹风比的增大会使得表面传热系数提高,但是在大湍流度下,换热增强效果较弱;相同吹风比下,高湍流度下的表面传热系数比相对较小。   相似文献   

15.
为了诊断瞬态高速喷流的结构特征,开展了基于分子滤波瑞利散射(FRS)技术的可视化研究.介绍了FRS技术的基本原理,分析了散射光的多普勒频移对诊断的影响.针对瞬态高速喷流特点,建立了FRS诊断系统,设计了两种不同的激光入射方式.采用与流场方向垂直的激光入射方式,获得了喷流与空气作用的湍流结构.而采用与流场轴向平行的激光入射方式,则获得了喷流自身的结构.FRS技术对瞬态高速喷流的可视化研究,对研究超声速湍流混合层流场具有重要指导意义.   相似文献   

16.
发动机燃气喷流对高超声速飞行器后体气动热环境有显著的影响,燃气喷流的物理模型对预测飞行器局部热环境有显著影响,为了利用脉冲风洞研究这类影响规律,研制了一套瞬态热喷流供气系统,建立了瞬态热喷流供气系统的工作方法。该系统的核心技术是利用氢氧燃烧驱动路德维希管(Ludwiegtube),提供瞬态热喷流气源。本研究包括以下内容:不同氢氧比例对燃烧产物热力学状态及产生方式的影响;不同点火、破膜方式对气源产生及喷流流场稳定性的影响。本研究提出的热喷流供气系统可以提供满足缩比模型喷流实验所需喷流状态的热气源;可以在50ms内起动工作,满足与脉冲风洞同步工作的要求。  相似文献   

17.
稀薄过渡流区横向喷流干扰效应数值模拟研究   总被引:3,自引:0,他引:3  
为了准确预测稀薄过渡流区横向喷流与稀薄大气的干扰流动特征,本文在建立直角与表面非结构网格混合结构的DSMC数值算法以及碰撞网格自适应算法基础上,提出基于MPI的静态随机负载平衡技术,构建了DSMC并行计算代码。计算的不同压力比条件下三维平板模型横向喷流与稀薄大气干扰的分离长度与低密度风洞试验有较好的一致性,验证了本文算法的可靠性。开展了细长钝双锥外形高超声速稀薄来流与超声速/高超声速横向喷流干扰效应的研究,计算分析了不同飞行高度、不同飞行速度、不同飞行攻角、不同喷流推力下复杂流场结构和对气动力特性的影响规律。考察了RCS喷管出口参数不同(均匀/非均匀)对喷口附近分离涡和分离长度的影响。  相似文献   

18.
喷流落压比对高超飞行器尾喷管内外流干扰的实验   总被引:1,自引:1,他引:0       下载免费PDF全文
为了研究吸气式高超声速飞行器尾喷流对飞行器尾部区域气动性能的影响,在中国空气动力研究与发展中心05m高超声速风洞中,在来流马赫数为50和60条件下,开展了不同落压比条件下的尾喷流干扰测压实验研究,同时采用高清纹影观测了喷流干扰区域的流场结构。实验结果表明:不同喷流落压比时,飞行器尾部区域表面压力分布差别明显,高落压比时喷流干扰作用的区域更大,压强数值更高。纹影也显示高落压比时交叉干扰激波更强、剪切层扩张更明显。喷流干扰区域已影响到了飞行器水平翼区域的压力分布,将会对飞行器操纵特性产生影响。   相似文献   

19.
邹辉  董鹏 《飞机设计》2010,30(5):1-6
采用了直接过滤的Navier-Stokes(N-S)方程组对高速可压缩湍流进行研究。针对高超声速湍流的非线性流动特性,对N-S方程直接过滤推导了大尺度湍流流场的控制方程,更精确地反映高速湍流的可压缩性,建立了可压缩湍流的大涡模拟TDM模型。使用传统的Smagorinsky模型的非线性推广,采用基于非Favre过滤的超声速可压缩湍流的大涡模拟模型,应用Caylay-Hamilton定理,建立可压缩湍流大涡模拟的非线性亚格子模型,并发展为动力学模式,模型中的两个常数通过当地流场动态的确定,消除了可调经验常数的影响。针对构造的高超声速湍流大涡模型开发相应的高效并行算法。  相似文献   

20.
采用AUSM -up格式模拟了二维超声速横侧喷流干扰流场.比较了SA、SST和EASM湍流模型对分离流动的模拟精度.通过调节喷流出口压力,研究了喷流参数对分离区大小、物面压力分布以及喷流喷射高度的影响.同实验对比发现:SST和EASM湍流模型在低压力比下能够比较准确模拟分离区,但是在高压力比下,湍流模型对分离区的模拟精度较差.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号