首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 600 毫秒
1.
研究了低挥发性增塑剂种类、用量和预烘温度对可挥发逸出物含量及逸出速率的影响,并与常用增塑剂石蜡油做比较.结果表明,低挥发性增塑剂的挥发逸出物含量均低于石蜡油,80℃预烘100 h大豆油(SO)逸出物含量最低,较石蜡油降低38.60%;80℃预烘7 h,SO由6份增加至15份,单位质量绝热层中SO的失重量增加178%;预...  相似文献   

2.
发动机壳体共固化过程是实现绝热层性能的关键工艺过程。为了优化三元乙丙橡胶(EPDM)绝热层配方性能,科学制定复合材料发动机壳体的共固化工艺制度,提高壳体绝热层成型质量,研究了常用硫化剂种类对EPDM绝热层硫化特性、力学性能、耐热性能和热失重率的影响。结果表明,EPDM/过氧化物体系的起始硫化反应温度较高,硫化速率快,EPDM/硫磺体系的起始硫化反应温度较低,硫化速率较慢; EPDM/过氧化物体系硫化较短时间即可获得较高的力学性能,而EPDM/硫磺体系随着硫化时间逐渐延长,其力学性能呈明显增加趋势; EPDM/过氧化物体系硫化胶片在80℃下的失重率明显高于EPDM/硫磺体系,而且过氧化物的分子结构决定了硫化产物的种类,从而导致不同种类的过氧化物硫化胶片的失重率亦存在较大差别。  相似文献   

3.
为降低EPDM绝热层中残留硬脂酸含量,分析了EPDM绝热层中硬脂酸与氧化锌的原材料性能和反应活性,当绝热层中无其他组分存在时,两者在橡胶高温硫化过程中可反应完全生成硬脂酸锌,此时硫化胶中硬脂酸基本不发生残留。通过液相色谱等手段测定绝热层硫化胶片中残留硬脂酸含量,研究了EPDM绝热层组分对硬脂酸与氧化锌反应的影响程度和影响机理,发现在一些常用的工艺助剂,如补强剂、阻燃剂和树脂等影响下,氧化锌与硬脂酸会发生可逆化学反应,导致绝热层硫化胶片中游离硬脂酸的含量增加,影响程度与工艺助剂本身特性和用量有关。  相似文献   

4.
耐烧蚀溴-锑体系三元乙丙橡胶绝热层的初步研制   总被引:1,自引:0,他引:1  
在绝热层配方组分筛选的基础上,采用过氧化物硫化体系,芳纶纤维和耐烧蚀硼树脂作为耐烧蚀填料,阻燃剂为含溴的阻燃剂和三氧化二锑以及少量的硼酸锌,并通过L9(33)正交实验确定了含溴的阻燃剂、三氧化二锑、硼酸锌的最佳用量分别为20份、15份、3份。确定的最佳配方和工艺生产出的三元乙丙橡胶绝热层的密度为1.188g/cm3,线烧蚀率为0.118mm/s,质量烧蚀率为0.063g/s,表明该体系初步满足了某小型固体火箭发动机燃烧室内壁绝热层的基本技术要求。  相似文献   

5.
芳砜纶浆粕/EPDM绝热层是固体火箭发动机的一种高性能新型绝热材料。在分析芳砜纶浆粕和芳纶浆粕热稳定性的基础上,对比研究了芳砜纶浆粕/EPDM绝热层与芳纶浆粕/EPDM绝热层的耐烧蚀性能、热性能及界面结合,并采用热失重、动态热机械与扫描电镜等手段分析了造成性能差异的原因。实验结果表明,芳砜纶浆粕的热降解峰值温度比芳纶浆粕高100℃。与芳纶浆粕/EPDM绝热层相比,芳砜纶浆粕/EPDM绝热层的线烧蚀率、热导率和热扩散系数较低,热稳定性较高,芳砜纶浆粕与基体的界面结合较好,这有利于提高绝热层的耐烧蚀性能。芳砜纶浆粕/EPDM绝热层可作为高性能绝热材料而广泛应用。  相似文献   

6.
为提高三元乙丙橡胶(EPDM)内绝热层材料的耐烧蚀性能,将马来酸酐接枝三元乙丙橡胶(EPDM-gMAH)作为基体与无机填料之间的相容剂。采用拉力试验机、多工位-氧乙炔烧蚀测试仪、热失重分析仪和扫描电镜等分析手段研究了材料的机械性能与耐烧蚀性能。测试结果表明:添加EPDM-g-MAH后,EPDM内绝热层材料的线烧蚀率和质量烧蚀率均有所降低,并且随着EPDM-g-MAH含量的增大,烧蚀后形成的碳层也越来越致密均匀。另一方面,当EPDM-g-MAH质量分数为9.5%和14.3%时,EPDM内绝热层材料的力学性能大幅度提升。其中,当EPDM-g-MAH质量分数为14.3%时,EPDM内绝热层材料综合性能最为优异,断裂伸长7.8倍,提高了1.191倍;拉伸强度为6.7MPa,提高了71.8%;线烧蚀率为0.079 9mm·s-1,下降了17.2%。该结果将为更多新型填料在EPDM材料中应用提供支持。  相似文献   

7.
为有效降低三元乙丙(EPDM)绝热材料中小分子挥发物含量,研究了液体EPDM(LEPDM)、液体低分子聚丁二烯(LPB)、液体低分子聚异戊二烯(LIR)、液体丁腈橡胶(LNBR)和液体端羟基聚丁二烯(LHTPB)等高分子增塑剂对EPDM绝热层门尼粘度、力学性能、烧蚀性能、老化性能、可挥发分含量和界面粘接性能的影响规律,并与传统橡胶增塑剂液体石蜡进行对比。结果表明,相比传统增塑剂LPO,高分子增塑剂制备EPDM绝热材料挥发分含量显著降低,其中LIR、LEPDM和HTPB三种高分子增塑剂制备绝热材料挥发分含量最低;同时,其玻璃化转变温度升高,断裂伸长率降低,线烧蚀率降低,门尼粘度和抗拉强度基本相当;除LEPDM外其他高分子增塑剂制备绝热材料的EPDM_生/EPDM_熟界面粘接强度明显下降; EPDM/铝和EPDM_生/EPDM_生界面粘接强度及70℃热老化性能基本相当。  相似文献   

8.
为保证发动机能在恶劣的环境中运行,在绝热层的设计中,绝热层的厚度将直接影响着发动机结构的稳定性,而绝热层的烧蚀预估对于绝热层厚度的合理设计非常重要。为解决固体火箭发动机三元乙丙橡胶(EPDM)绝热层烧蚀性能工程预估问题,结合固体火箭发动机内两相流动的环境特点,以热化学烧蚀三方程模型和扩散化学动力学双控制机制为基本数学模型,以炭化层表面孔隙率为耦合参数,并综合考虑气流和粒子的侵蚀效应,建立了绝热层多因素耦合烧蚀模型的控制方程。通过对控制方程的隐式求解和对绝热层温度分布以及烧蚀线、炭化线、热解线位置的综合分析,获得了两相环境下EPDM绝热层的理论炭化烧蚀率。所得烧蚀率与实验结果对比,误差小于10%,表明给出的烧蚀预估方法可用于固体火箭发动机两相环境下EPDM绝热层烧蚀工程分析。  相似文献   

9.
芳纶纤维和丁腈橡胶体系绝热层新配方的研制   总被引:1,自引:0,他引:1  
采用含卤-锑的阻燃剂,芳纶纤维代替石棉纤维,研制了耐烧蚀的丁腈橡胶绝热层新配方(D210配方)。试验研究了芳纶纤维用量、卤-锑阻燃剂用量及纤维排布方向对绝热层烧蚀性能的影响;研究了增塑剂用量对绝热层玻璃化温度的影响。结果表明,芳纶纤维用量为4份时,绝热层烧蚀性能最佳,线烧蚀率为0.051 mm/s,质量烧蚀率为0.069 g/s;在选定的阻燃剂用量范围内,阻燃剂对绝热层烧蚀性能影响不大;所选增塑剂用量为20份时,玻璃化温度Tg可达-40℃。试验还对绝热层力学性能、硬度、粘接性能、比热容、导热等性能进行了测试,表明新研制的耐烧蚀橡胶有可能成为替代传统的石棉纤维和丁腈橡胶体系的固体火箭发动机燃烧室内绝热层。  相似文献   

10.
采用溶胶-凝胶法制备了C/SiC刹车材料硼硅玻璃防氧化涂层。用FTIR、XRD、TG-DSC研究了溶胶到玻璃的形成过程,并分析了硼硅玻璃涂层的防氧化性能及抗热震性能。结果表明,所得硼硅玻璃涂层均匀、致密,并与基体结合紧密。在800℃,硼硅玻璃涂层具有优异的防氧化性能,良好的高温稳定性和抗热震性能,尤其具有优良的耐海水侵蚀性能。在800℃氧化10 h,未经海水浸泡的涂层样失重率约为0.33%;经过海水浸泡的涂层样失重率约为2.36%。经50次热震(共氧化10 h)后,涂层保持完好,失重率约为9.79%。  相似文献   

11.
为揭示柔性内绝热层材料内有机纤维在烧蚀过程中的形貌变化规律和烧蚀机理,分别采用氧乙炔火焰、1000℃高温铁板和热失重加热等不同加热方式,初步探究了不同烧蚀形式下芳纶纤维或腈纶纤维在结炭层内部的形貌演变特征,发现经氧乙炔火焰烧蚀后芳纶增强体系的结炭层内中芳纶炭化纤维呈现中空烧蚀形貌,而腈纶增强体系的结炭层中几乎无纤维状结...  相似文献   

12.
分别测试了M40J碳纤维增强环氧改性氰酸酯复合材料在紫外照射前后真空环境(125℃,10-3 Pa)下的逸气性能.结果表明,复合材料总质量损失为0.27%,可凝挥发物为0,逸出气体主要是氢气、氮气和水,紫外照射后总质量损失为0.2%,照射前后复合材料结构无变化,真空逸气性能满足国际标准要求.  相似文献   

13.
高超声速流动壁面催化复合气动加热特性   总被引:2,自引:0,他引:2  
针对高超声速流动壁面催化特性,计算了不同壁面催化复合系数条件下的球锥驻点热环境。引入了经验证的数值求解Navier Stokes方程的方法,在不同壁温500K~2500K的条件下分别分析了O 2和N 2气体在壁面处的催化复合气动加热特性,得到如下结论:(1) 原子复合放热将提高近壁面温度梯度,改变近壁面组分分布;原子复合放热一部分加热飞行器形成组分扩散热流,一部分加热近壁气体提高近壁温度梯度。(2) 在壁面催化复合系数较小时,原子复合放热主要转化为组分扩散加热,对于不同壁面温度,壁面催化复合系数α<0.1时,单一气体反应组分扩散热流小于总热流的20%。  相似文献   

14.
环氧树脂/氰酸酯共混树脂已用作液氧贮箱复合材料的基体树脂。本文选用低吸水率的双酚A二炔丙基醚(DPEBA)与氰酸酯等摩尔共混,研究以不同催化剂对DPEBA与氰酸酯共混树脂体系固化反应的影响,并考察了催化固化的共混树脂体系的热稳定性和冲击性能。研究结果表明:过渡金属的乙酰丙酮盐和二丁基二月桂酸锡可降低双酚AF型氰酸酯(BAFDCy)的固化温度,质量分数为0.2%的乙酰丙酮铜可明显使BAFDCy的固化温度降至200℃以下。双酚A二炔丙基醚(DPEBA)预聚后与氰酸酯等摩尔共混,在0.3%的Cu(acac)_2催化下,可在200℃以下固化,与双酚E型氰酸酯、双酚A型氰酸酯和双酚AF型氰酸酯共混树脂的固化物在空气中600℃的残留率分别为38%、36%和0.7%,浇铸体的冲击强度分别为5、6和8 kJ·m~(-2)。  相似文献   

15.
针对固体火箭发动机高浓度颗粒流冲刷下的粒子侵蚀绝热层问题,运用Standard k-ε湍流模型和颗粒轨道模型对某型地面模拟过载试验发动机进行三维两相流数值模拟,分析两相流场特性,基于Oka粒子侵蚀模型计算某型EPDM绝热层的粒子侵蚀率,并与7次地面模拟过载试验发动机粒子侵蚀试验结果进行对比。数值结果表明,该粒子侵蚀模型可靠且精度有保证,能够正确预示绝热层粒子侵蚀特性;计算与试验所得的侵蚀率分布范围基本相同,计算所得最大侵蚀率偏大,最小相对误差4.69%,平均相对误差约13.89%;但侵蚀分布特征与试验结果不完全一致,分析认为粒径分布数据与真实值的偏差是侵蚀分布特征存在差异的主要原因。研究结果可用于工程中EPDM绝热层高浓度颗粒冲刷下的粒子侵蚀分析,能够为固体火箭发动机绝热层设计及热防护可靠性研究提供参考。  相似文献   

16.
评价了以均苯四甲二酐为原料合成的一组缩聚型聚酰亚胺371℃时的应用潜力,研究了由均苯四甲酸的二甲基酯和2,2—双[4(4—氨基苯氧基)苯基]1,1,1,3,3,3—六氟丙烷制备的聚酰亚胺,这表明它是仅有的玻璃化温度高于371℃的树脂体系,采用PMDE/BDAF体系和未上胶的6K石墨纤维制成的单向复合材料试样,在常压下暴露200h后的质量损失为12%,371℃时ILSS的保持率为88%;暴露在0.52MPa压力下72h则表现出类似的质量损失,371℃时ILSS的保持率为71%,由此结果,虽以PMDE/BDAF聚酰亚胺体系作为连续暴露在371℃空气中、常压下持续200h的复合材料基体树脂是可能的,但在371℃和高压条件下的使用寿命却只能局限在48h~72h。  相似文献   

17.
有机纤维/EPDM绝热材料性能研究   总被引:2,自引:0,他引:2  
通过对腈纶短纤维、芳纶短纤维各自用量对EPDM绝热层材料烧蚀速率、孔隙率影响的研究,并结合氮气环境下热失重曲线和炭层SEM照片分析,发现腈纶短纤维不仅高温残炭率高于芳纶短纤维,而且可在较宽的温度范围内逐步热解炭化,烧蚀过程所产生的热解气体能逐步而快速地释放出炭层,结炭层孔隙率小,致密坚硬,能抵抗高温燃气流的烧蚀和冲蚀作用,材料的烧蚀速率较低;芳纶短纤维虽然具有较高的热稳定性,但热分解温度范围较窄,热解所产生的大量气体很难快速释放出炭层表面,结炭层孔隙率大,炭层疏松且呈层片状,不能抵抗高冲蚀性粒子流的烧蚀和冲蚀,烧蚀速率较高。  相似文献   

18.
以六氯环三磷腈、2,3-环氧基-1-丙醇为原料,得到六缩水甘油基环三磷腈(HGCP)。通过红外、核磁、质谱及元素分析对产物结构进行了表征,并研究了溶剂、原料配比、反应温度和时间对反应的影响。结果表明,合成的最佳条件是:四氢呋喃为溶剂,反应物料配比为n(2,3-环氧基-1-丙醇):n(六氯环三磷腈)=7.62,反应温度为30℃,反应时间4.0 h,产品收率达到78%。选取顺丁烯二酸酐(MA)和4,4-二氨基-二苯-甲烷(MDA)为固化剂,通过热失重分析和线烧蚀率研究了不同固化体系的耐热性和耐烧蚀性。研究表明,六缩水甘油基环三磷腈表现出优良的热稳定性,其交联产物EPG-1和EPG-2在高温条件下残炭量较高,线烧蚀率分别为0.344 mm/s和0.364 mm/s,可作为固体火箭推进剂绝热包覆材料使用。  相似文献   

19.
TDE-85环氧树脂固化动力学的DSC和DMA研究   总被引:4,自引:0,他引:4  
根据DSC和DMA测试曲线,分别用Kissinger、Flynn-Wall-Ozawa、Friedman-Reich-Levi模型计算了TDE-85/THPA环氧树脂体系的固化动力学参数。Kissering法所得活化能较低,其他几种计算方法所得活化能比较一致,相对误差在10%之内。将Gaussian分布应用于分峰法,计算了每个反应的动力学参数,模拟结果与DSC曲线具有很好的一致性。双峰表明,固化过程包含2个化学反应,缩水甘油脂基的反应活性比脂环基高。利用外推法确定了固化工艺为100℃/6 h 130℃/4 h 160℃/2 h。  相似文献   

20.
为提高废弃HTPB推进剂中高氯酸铵(AP)组分的回收率,采用水/丙酮混合溶剂体系对HTPB推进剂中的AP进行提取。探讨了超声提取时间、提取温度、水/丙酮体积比、液料比、推进剂试样厚度对AP提取率的影响规律。采用傅里叶漫反射红外光谱仪(DRIFT)、X射线衍射仪(XRD)、扫描电镜(SEM)等手段对提取结果进行表征。结果表明,提取温度45℃、超声提取时间3.5 h、水/丙酮体积比2∶1、液料比10∶1、试样厚度3 mm是提取HTPB推进剂中AP组分的最佳工艺参数。在该工艺条件下,AP的回收率为96.3%,AP的纯度为96.5%。结果证明,水/丙酮混合体系可用于废弃HTPB推进剂中AP组分的分离回收。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号