首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
An experiment using plant protoplasts has been accepted for the IML-1 Space Shuttle mission scheduled for 1991. Preparatory experiments have been performed using both fast and slow rotating clinostats and in orbit to study the effect of simulated and real weightlessness on protoplast regeneration. Late access to the space vehicles before launch has required special attention since it is important to delay cell wall regeneration until the samples are in orbit. On a flight on Biokosmos 9 ("Kosmos-2044") in September 1989 some preliminary results were obtained. Compared to the ground control, the growth of both carrot and rapeseed protoplasts was decreased by 18% and 44% respectively, after 14 days in orbit. The results also indicated that there is less cell wall regeneration under micro-g conditions. Compared to the ground controls the production of cellulose in rapeseed and carrot flight samples was only 46% and 29% respectively. The production of hemicellulose in the flight samples was 63% and 67% respectively of that of the ground controls. In both cases all samples reached the stage of callus development. The peroxidase activity was also found to be lower in the flight samples than in the ground controls, and the number of different isoenzymes was decreased in the flight samples. In general, the regeneration processes were retarded in the flight samples with respect to the ground controls. From a simulation experiment for IML-1 performed in January 1990 at ESTEC, Holland, regenerated plants have been obtained. These results are discussed and compared to the results obtained on Biokosmos 9. Protoplast regeneration did not develop beyond the callus stage in either the flight or the ground control samples from the Biokosmos 9 experiment.  相似文献   

2.
Preparatory experiments for the IML-1 mission using plant protoplasts, were flown on a 14-day flight on Biokosmos 9 in September 1989. Thirty-six hours before launch of the biosatellite, protoplasts were isolated from hypocotyl cells of rapeseed (Brassica napus) and suspension cultures of carrot (Daucus carota). Ultrastructural and fluorescence analysis of cell aggregates from these protoplasts, cultured under microgravity conditions, have been performed. In the flight samples as well as in the ground controls, a portion of the total number of protoplasts regenerated cell walls. The processes of cell differentiation and proliferation under micro-g did not differ significantly from those under normal gravity conditions. However, in micro-g differences were observed in the ultrastructure of some organelles such as plastids and mitochondria. There was also an increase in the frequency of the occurrence of folds formed by the plasmalemma together with an increase in the degree of complexity of these folds. In cell cultures developed under micro-g conditions, the calcium content tends to decrease, compared to the ground control. Different aspects of using isolated protoplasts for clarifying the mechanisms of biological effects of microgravity are discussed.  相似文献   

3.
The establishment of polarities during early embryogenesis is essential for normal development. Amphibian eggs are appropriate models for studies on embryonic pattern formation. The animal-vegetal axis of the axially symmetrical amphibian egg originates during oogenesis and foreshadows the main body axis of the embryo. The dorso-ventral polarity is epigenetically established before first cleavage. Recent experiments strongly suggest that in the monospermic eggs of the anuran Xenopus laevis both the cytoskeleton and gravity act in the determination of the dorso-ventral polarity. In order to test the role of gravity in this process, eggs will be fertilized under microgravity conditions during the SL-D1 flight in 1985. In a fully automatic experiment container eggs will be kept under well-defined conditions and artificially fertilized as soon as microgravity is reached; eggs and embryos at different stages will then be fixed for later examination. Back on earth the material will be analysed and we will know whether fertilization under microgravity conditions is possible. If so, the relation of the dorso-ventral axis to the former sperm entry point will be determined on the whole embryos; in addition eggs and embryos will be analysed cytologically.  相似文献   

4.
基于 Brouwer 平根数的冻结轨道   总被引:6,自引:1,他引:5  
基于Brouwer平根数的概念研究了冻结轨道,发现了这样一个事实:如果用Brouwer平根数来表示冻结轨道,则该平根数对应的轨道恰是一条精确的圆轨道。在此基础上还对冻结轨道的性状作了新的解释。此外还针对只包含二阶和三阶带谐调和项的地球引力场内的冻结轨道偏心率在临界倾角附近的性状作了分析,显示出临界倾角附近轨道的异常性状在这个低阶的引力场内仍未改变。  相似文献   

5.
During outgrowth of the radicle of cress ( L.) the statocytes of the root cap develop a structural polarity with the nucleus at the proximal cell pole and a complex of endoplasmic reticulum (ER) at the distal cell pole. Amyloplasts sediment upon this complex of ER. During all stages of development of the cytoskeleton (microtubules, microfilaments) is involved in positioning of the ER. The structural polarity of the statocytes develops independently of gravity, as indicated by corresponding results from fast and slow rotating clinostats and roots grown under microgravity in orbit. Disturbance of the structural polarity is possible by application of drugs, influencing microtubules and microfilaments. If, by rotation of roots on slow rotating clinostats or centrifugation, the structural polarity of the statocytes is changed, the ability of the roots to perceive gravity is affected also.  相似文献   

6.
太阳高纬探测器的借力飞行轨道设计   总被引:2,自引:1,他引:1  
行星借力飞行技术可以节省深空探测任务的能量消耗.针对借助内行星引力向太阳高纬度发射探测器这一科学任务,分别以金星和地球为借力星体,运用圆锥曲线拼接法,通过求解兰伯特问题绘制能量等高线图,搜索多天体交会发射机会,设计探测器与借力体轨道周期之比为1∶ 1或2∶ 3的多次借力行星际轨道,获得相对黄道面成大倾角的目标轨道.分析表明,采用多天体交会借力相比单天体借力可大大降低发射能量;3次借用金星或者地球的引力可以使探测器轨道相对黄道面的倾角达到30°左右;3次地球借力轨道性能为最优,需要的地球发射能量更低,而且飞行器进入目标轨道之前的转移时间较短.   相似文献   

7.
对地观测卫星固定波束数据传输天线覆盖特性研究   总被引:2,自引:0,他引:2  
从卫星系统设计入手,利用J2轨道模型及星地空间几何关系研究了太阳同步、近极圆轨道、三轴稳定对地观测卫星的星地数传无线链路,得到了在地面站作用范围内均衡接收的波束分布特性。研究结果表明卫星进、出地面站的周向分布是不均匀的,沿卫星飞行方向进、出地面站概率最大,而垂直于卫星速度方向,卫星进、出地面站概率最低;并分析了波导十字缝阵组合天线的覆盖特性。  相似文献   

8.
低地球轨道大气环境对诸如科学探测和对地观测卫星的阻尼作用十分明显,而且阻尼随太阳和地磁活动以及昼夜、季节交替变化范围宽。为了保证卫星轨道精度或飞行状态满足任务要求,需要利用推进系统对卫星受到的阻尼进行实时或间歇式补偿以实现轨道或飞行状态的保持。针对轨道高度220~268km的无拖曳飞行和轨道维持应用,基于卫星轨道阻尼变化和有效载荷指标要求分析,研究确定了离子电推进技术指标、推力调节方案、系统组成、推力控制方案和在轨应用策略,并对推力调节方案进行了试验验证。结果表明,与无拖曳飞行卫星任务匹配的离子电推进指标为推力调节范围1~20mN,推力分辨率优于12μN,与对地观测卫星轨道维持任务匹配的指标为推力调节范围1~25mN,推力分辨率100μN。研究提出的针对超低轨道卫星应用需求的高精度推力连续调节离子电推进技术方案,具有工程任务针对性和参考价值。  相似文献   

9.
现有的卫星控制系统全物理仿真很少对卫星绕地球的轨道运动进行模拟,即使在卫星间相对轨道运动的全物理仿真中也没有考虑地心引力差和惯性力项的存在,因此其逼真度受到了影响.提出一种在共面圆轨道近距离卫星相对运动全物理仿真中引入地心引力差和惯性力项的方法,提高了物理仿真实验的逼真度.  相似文献   

10.
Transient effects of microgravity on early embryos of Xenopus laevis.   总被引:1,自引:0,他引:1  
In order to study the role of gravity on the early development of the clawed toad Xenopus laevis, we performed an experiment on the Maser-6 sounding rocket launched from Kiruna (Sweden) on 4 Nov 1993. The aim was to find out whether a short period of microgravity during fertilization and the first few minutes of development does indeed result in abnormal axis formation as was suggested by a pilot experiment on the Maser 3 in 1989. On the Maser 6 we used two new technical additions in the Fokker CIS unit, viz. a 1-g control centrifuge and a video recording unit which both worked successfully. The 1-g control centrifuge was used to discriminate between the influences of flight perturbations and microgravity. After fertilization shortly before launch, one of the first indications of successful egg activation, the cortical contraction, was registered in microgravity and on earth. Analysis of the video tapes revealed that the cortical contraction in microgravity starts earlier than at 1 g on earth. After recovery of the eggs fertilized in microgravity and culture of the embryos on earth, the morphology of the blastocoel has some consistent differences from blastulae from eggs fertilized in the 1-g centrifuge of the rocket. However from the gastrula stage onward, the microgravity embryos apparently recover and resume normal development: the XBra gene is normally expressed, and histological examination shows normal axis formation.  相似文献   

11.
The Earth’s gravity field can be measured with high precision by constructing the purely gravitational orbit of the inner-satellite in Inner-formation Flying System (IFS), which is independently proposed by Chinese scholars and offers a new way to carry out gravity field measurement by satellite without accelerometers. In IFS, for the purpose of quickly evaluating the highest degree of recovered gravity field model and geoid error as well as analyzing the influence of system parameters on gravity field measurement, an analytical formula was established by spectral analysis method. The formula can reflect the analytical relationship between gravity field measurement performance and system parameters such as orbit altitude, the inner-satellite orbit determination error, the inner-satellite residual disturbances, data sampling interval and total measurement time. This analytical formula was then corrected by four factors introduced from numerical simulation of IFS gravity field measurement. By comparing computation results from corrected analytical formula and the actual gravity field measurement performance by CHAMP, the correctness and rationality of this analytical formula were verified. Based on this analytical formula, the influences of system parameters on IFS gravity field measurement were analyzed. It is known that gravity field measurement performance is a monotone decreasing function of orbit altitude, the inner-satellite orbit determination error, the inner-satellite residual disturbances, data sampling interval and the reciprocal of total measurement time. There is a match relationship between the inner-satellite orbit determination error and residual disturbances, in other words, the change rate of gravity field measurement performance with one of them is seriously restricted by their relative size. The analytical formula can be used to quantitatively evaluate gravity field measurement performance fast and design IFS parameters optimally. It is noted that the analytical formula and corresponding conclusions are applied to any gravity satellite which measures gravity field by satellite perturbation orbit.  相似文献   

12.
对于停留在日地系统L2的“嫦娥2号”探测器,其后续飞行方案有多个选项,例如主动撞月或重返月球轨道、返回地球轨道或再入大气、飞往地月系统L1/L2或日地系统L1、进入深空飞越近地小行星(最终,“嫦娥2号”于2012年12月13日成功地实现了对Toutatis小行星的近距离飞越)。探讨上述的飞行方案需要对飞行轨道进行初步设计,总的速度脉冲限制在100 m/s以内并且需要考虑探测器同时受到太阳、地球、月球的引力作用。本研究设计了探测器从日地系统L2出发借力月球实现Toutatis小行星飞越的飞行方案,与直接飞越方案相比,借力月球可以进一步节省探测器的燃料消耗,其等效速度脉冲设计值为58.47 m/s。  相似文献   

13.
针对特定探测天体,给出了特殊用途的探空火箭与其实现空间交会的时刻与地点的计算方法.根据特定天体的运行轨道,发射前算出标称交会飞行轨道,装订在箭载计算机内.火箭发射后,利用箭载惯性导航系统确定自身当前的位置与速度,比对标称飞行轨道参数得出飞行偏差,通过控制火箭推力偏斜调整飞行轨道,使探空火箭在交会时刻到达交会点,并在交会时刻相对与惯性空间的速度为0.定义了研究所用的各种坐标系,建立了火箭飞行动力学方程.研究了标称飞行轨道最优交会点选取,交会时间与发射时间计算等问题.给出了发射后动力飞行段的制导控制规律,核心思想是将控制信号分解为时间控制、当地水平面上的海拔高度控制、南北控制与东西控制,通过设置偏置量减小关机后轨道摄动因素引起的漂移.利用计算机数值仿真验证了这种制导控制规律的可行性.  相似文献   

14.
基于我国未来木星系探测任务需求,初步设计了任务轨迹。以目前的发射能力,要实现木星的环绕探测必将利用行星借力,需设计借力轨迹。首先将脉冲变轨的轨迹设计问题转化为参数优化问题,在满足2029—2032年间发射并且飞行时间不超过7年的约束条件下,使用PSO算法对发射时刻、借力时刻、深空机动时刻、到达时刻等参数进行优化,使得探测器需提供的总速度增量最小。探测器进入木星系后,利用木卫3借力捕获至环木大椭圆轨道,又利用木卫4构造共振借力,最终捕获至木卫4的环绕轨道。在此基础上,还考虑了天王星飞越的拓展任务,天王星探测器在到达木星时与木星系探测器分离,利用木星借力可无消耗飞往天王星,并在2043年完成天王星的飞越探测任务。  相似文献   

15.
Water is the essential precondition of life in general and also for the establishment of a Martian base suitable for long duration stays of humans. It is not yet proven if there is indeed a "frozen ocean" under the surface of Mars but if this could be verified it would open innovative aspects for the construction of bioregenerative life support systems (BLSS). In a general concept higher plants will play the predominant role in a Martian BLSS. It is not clear, however, how these will grow and bring seed in reduced gravity and there may be differences in the productivity in comparison to Earth conditions. Therefore, organisms which are already adapted to low gravity conditions, namely non-gravitropic aquatic plants and also aquatic animals may be used to enhance the functionality of the Martian BLSS as a whole. It has been shown already with the so-called C.E.B.A.S. MINIMODULE in the STS-89 and STS-90 spaceshuttle missions that the water plant Ceratophyllum demersum has an undisturbed and high biomass production under space conditions. Moreover, the teleost fish species Xiphophorus helleri adapted easily to the micro-g environment and maintained its normal reproductive functions. Based on this findings a possible scenario is presented in which aquatic plant production modules and combined animal-plant production systems may be used for human food production and water and air regeneration in a Martian base.  相似文献   

16.
The 53 kDa tumor suppressor protein p53 is generally thought to contribute to the genetic stability of cells and to protect cells from DNA damage through the activity of p53-centered signal transduction pathways. To clarify the effect of space radiation on the expression of p53-dependent regulated genes, gene expression profiles were compared between two human cultured lymphoblastoid cell lines: one line (TSCE5) has a wild-type p53 gene status, and the other line (WTK1) has a mutated p53 gene status. Frozen human lymphoblastoid cells were stored in a freezer in the International Space Station (ISS) for 133 days. Gene expression was analyzed using DNA chips after culturing the space samples for 6 h on the ground after their return from space. Ground control samples were also cultured for 6 h after being stored in a frozen state on the ground for the same time period that the frozen cells were in space. p53-Dependent gene expression was calculated from the ratio of the gene expression values in wild-type p53 cells and in mutated p53 cells. The expression of 50 p53-dependent genes was up-regulated, and the expression of 94 p53-dependent genes was down-regulated after spaceflight. These expression data identified genes which could be useful in advancing studies in basic space radiation biology. The biological meaning of these results is discussed from the aspect of gene functions in the up- and down-regulated genes after exposure to low doses of space radiation.  相似文献   

17.
This study presents qualitative and quantitative data concerning gravity-dependent changes in the swimming behaviour of developing cichlid fish larvae (Oreochromis mossambicus) after a 9 resp. 10 days exposure to increased acceleration (centrifuge experiments), to reduced gravity (fast-rotating clinostat), changed accelerations (parabolic aircraft flights) and to near weightlessness (2nd German Spacelab Mission D-2). Changes of gravity initially cause disturbances of the swimming performance of the fish larvae. With prolonged stay in orbit a step by step normalisation of the swimming behaviour took place in the fish. After return to 1g earth conditions no somersaulting or looping could be detected concerning the fish, but still slow and disorientated movements as compared to controls occurred. The fish larvae adapted to earth gravity within 3-5 days. Fish seem to be in a distinct early developmental stages extreme sensitive and adaptable to altered gravity; However, elder fish either do not react or show compensatory behaviour e.g. escape reactions.  相似文献   

18.
Plans for the various missions in which men and women are expected to participate during the next 10 years are outlined. Such missions include flights of up to three months duration in low earth orbit as well as possible short excursions to geosynchronous orbit. Research activities are described which cover the full spectrum of physiological and psychological responses to space flight. These activities are shown to contribute to the ongoing Shuttle program and the future Space Station. The paper includes a summary of the major technical thrusts needed to support extended habitation in space.  相似文献   

19.
AstroNewt experiment explores the effects of earth gravity on the early development of Japanese red-bellied newt, Cynops pyrrhogaster. Since female newts keep spermatophore in cloaca, fertilized eggs could be obtained without mating. Fertilization of newt's egg occurs just prior to spawning, so that gonadotrophic cues applied to females in orbit leads to laying eggs fertilized just in space. A property of newt being kept in hibernation at low temperature may be of great help for the space experiment carried out with much limited resources. A general outline of the AstroNewt project is shown here in addition to some technical advances for the development of the project. Experimental schemes of two space experiments (IML-2 in summer 1994 and unmanned SFU at the beginning of 1995) are also shown.  相似文献   

20.
为实现我国首次月球样品无人采样返回任务,设计了嫦娥五号(Chang’E 5)探测器制导、导航与控制(GNC)系统.根据任务要求和探测器特点,GNC系统设计分为轨道器GNC子系统、返回器GNC子系统和着上组合体GNC子系统.给出了嫦娥五号探测器GNC系统的架构设计、工作模式以及在轨飞行结果.结果表明,GNC系统设计正确,成功完成了动力下降、起飞上升、交会对接、返回再入等关键动作,实现了月球表面起飞上升、月球轨道交会对接以及携带月壤以近第二宇宙速度二次再入返回的三项首次任务,各项功能性能满足任务要求.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号