首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 293 毫秒
1.
Simulation model for the closed plant experiment facility of CEEF.   总被引:1,自引:0,他引:1  
The Closed Ecology Experiment Facilities (CEEF) is a testbed for Controlled Ecological Life Support Systems (CELSS) investigations. CEEF including the physico-chemical material regenerative system has been constructed for the experiments of material circulation among plants, breeding animals and crew of CEEF. Because CEEF is a complex system, an appropriate schedule for the operation must be prepared in advance. The CEEF behavioral Prediction System, CPS, that will help to confirm the operation schedule, is under development. CPS will simulate CEEFs behavior with data (conditions of equipments, quantity of materials in tanks, etc.) of CEEF and an operation schedule that will be made by the operation team everyday, before the schedule will be carried out. The result of the simulation will show whether the operation schedule is appropriate or not. In order to realize CPS, models of the simulation program that is installed in CPS must mirror the real facilities of CEEF. For the first step of development, a flexible algorithm of the simulation program was investigated. The next step was development of a replicate simulation model of the material circulation system for the Closed Plant Experiment Facility (CPEF) that is a part of CEEF. All the parts of a real material circulation system for CPEF are connected together and work as a complex mechanism. In the simulation model, the system was separated into 38 units according to its operational segmentation. In order to develop each model for its corresponding unit, specifications for the model were fixed based on the specifications of the real part. These models were put into a simulation model for the system.  相似文献   

2.
In order to study the relationship between the physiological metabolism of living things and the environmental factors such as the atmospheric contents and so on within the closed ecosystem, Closed Ecology Experiment Facilities (CEEF) were designed and now under construction based on the following concepts: (1) Individual sealed chambers (called modules) for the plant cultivation, animal breeding, human habitation and microbial waste treatment are to be constructed independently to be able to study the metabolic effects of each living thing on the environmental factors within closed ecosystem. (2) A chamber for the microbial waste treatment are to be replaced with two systems; wet oxidation reactors and chemical nitrogen fixation reactors. (3) Atmospheric control systems are to be independently attached to each module for stabilizing atmospheric contents in each module. (4) Any construction materials having the possibility to absorb oxygen and carbon dioxide are to be prohibited to use in each module for sustaining material balance. (5) Facilities have to be developed so that the closed plant and animal experiments can be done independently, as well as integrated experiments with plants and animals through exchanging foods, carbon dioxide, oxygen, condensed water and nutrient solution.  相似文献   

3.
Human habitation and animal holding experiments in a closed environment, the Closed Ecology Experiment Facilities (CEEF), were carried out. The CEEF were established for collecting experimental data to estimate carbon transfer in the ecosystem around Rokkasho nuclear fuel reprocessing plant. Circulation of O2 and CO2, and supply of food from crops cultivated in the CEEF were conducted for the first time in the habitation experiments. Two humans known as eco-nauts inhabited the CEEF, living and working in the Plant Module (PM) and the Animal and Habitation Module (AHM), for a week three times in 2005. On a fresh weight basis, 82% of their food was supplied from 23 crops including rice and soybean, cultivated and harvested in the PM, in the 2nd and 3rd experiments. For the goats, the animals held in the experiments, all of their feed, consisting of rice straw, soybean plant leaves, and peanut shells and peanut plant leaves, was produced in the PM in the 2nd and 3rd experiments. The O2 produced in the PM by photosynthesis of the crops was separated by the O2 separator using molecular sheaves, then accumulated, transferred, and supplied to the AHM atmosphere. The CO2 produced in the AHM by respiration of the humans and animals was separated by the CO2 separator using solid amine, then accumulated, transferred, and supplied to the PM atmosphere. The amount of O2 consumed in the AHM was 46–51% of that produced in the PM, and the amount of CO2 produced in the AHM was 43–56% of that consumed in the PM. The surplus of O2 and the shortage of CO2 was a result of the fact that waste of the goats and the crops and part of the human waste were not processed in these habitation experiments. The estimated amount of carbon ingested by the eco-nauts was 64–92% of that in the harvested edible part of the crops. The estimated amount of carbon ingested by the goats was 36–53% of that in the harvested inedible part of the crops. One week was not enough time for determination of gas exchange especially for humans and animals, because fluctuation of their gas exchange was quite high. The amount of transpired water collected as condensate was 818–938 L d−1, and it was recycled as replenishing water compensating transpiration loss of nutrient solution. The amount of waste nutrient solution discharged from the PM was 1421–1644 L d−1. The waste nutrient solutions from rice and other crops were processed through micro filters (MFs) separately. The MF filtrated solutions were processed with reverse osmosis (RO) membrane filter separately and divided into filtrated water and concentrated waste nutrient solution. The concentrated waste nutrient solution from the crops other than rice was processed through an ultra-micro filter (UF) and reused, although that from rice was discharged in 2005. Concentrations of nutritional ions in the UF filtrated solution were determined, the depleted ions were added back, the UF filtrated solution was diluted with the RO membrane filtrated water, and the nutrient solution for the crops other than rice was regenerated. The nutrient solution for rice was newly made each time, using concentrated solution from an external source and the RO membrane filtrated water. Average amounts of water used in the AHM (L d−1) were determined as follows: drinking by humans (filtrated water), 1.5; cooking, etc. (filtrated water other than for drinking), 14.3; drinking by goats, 3.8; showering (hot water), 13.2; showering (cold water), 0.1; washing of hand and face and brushing teeth, 4.1; washing of dishes, dish clothes and towels, 36.4; and washing of animal holding tools, 0.3. The waste water was processed by a RO purification system and recycled for toilet flushing and animal pens washing. A circulation experiment for water was started in 2006 and a circulation experiment for waste materials is planned for 2007. In 2006, a single duration of the air circulation experiments was 2 weeks, although the human habitants were changed after 1 week.  相似文献   

4.
CEEF (Closed Ecology Experiment Facilities) were installed at Rokkasho village in northern Japan, for the purpose of clarifying life-support mechanisms in a completely closed space, such as a Lunar or Mars base. An integration test using the Closed Plantation Experiment Facility and Closed Animal Breeding & Habitation Experiment Facility is needed before conducting an entire closed experiment including plants, animals and humans. These integration tests are planned to be conducted step by step from fiscal 2001 to 2008.  相似文献   

5.
New test bed facilities such as Bioplex and CEEF have been constructed to test the new advanced technologies for solving the various problems as follows, (1) how to develop air content stabilization technologies with gas balance between the generation and the absorption by living organisms, (2) how to solve the mismatching between the assimilation rate of autotrophic organisms and the respiration rate of heterotrophic organisms, (3) how to balance the speed of the waste decomposition with the absorption speed of nutrient components in the sequential plant cultivation, (4) how to develop new nutrient adjusting subsystems for each plant species, (5) how to compensate the denitrification during the waste decomposition and anaerobic microbes in the nutrient solution.  相似文献   

6.
The history of construction of the CEEF (the Mini-Earth), the configuration and scale of the CEEF are initially described. The effective usable areas in plant cultivation and animal holding and habitation modules and the accommodation equipment installed in each module are also explained. Mechanisms of the material circulation systems belonging to each module and subsystems in each material circulation system are introduced. Finally the results of pre-habitation experiments conducted until the year 2004 for clarifying the requirements in order to promote final closed habitation experiments are shown.  相似文献   

7.
In order to predict carbon sequestration of vegetation with the future rise in atmospheric CO2 concentration, [CO2] and temperature, long term effects of high [CO2] and high temperature on responses of both photosynthesis and transpiration of plants as a whole community to environmental parameters need to be elucidated. Especially in the last decade, many studies on photosynthetic acclimation to elevated [CO2] at gene, cell, tissue or leaf level for only vegetative growth phase (i.e. before formation of reproductive organs) have been conducted all over the world. However, CO2 acclimation studies at population or community level for a whole growing season are thus far very rare. Data obtained from repeatable experiments at population or community level for a whole growing season are necessary for modeling carbon sequestration of a plant community. On the other hand, in order to stabilize material circulation in the artificial ecological system of Closed Ecology Experiment Facilities (CEEF), it is necessary to predict material exchange rates in the biological systems. In particular, the material exchange rate in higher plant systems is highly variable during growth periods and there is a strong dependence on environmental conditions. For this reason, dependencies of both CO2 exchange rate and transpiration rate of three rice populations grown from seed under differing conditions of [CO2] and day/night air temperature (350 microL CO2 L-1, 24/17 degrees C (population A); 700 microL CO2 L-1, 24/17 degrees C (population B) and 700 microL CO2 L-1, 26/19 degrees C (population C)) upon PPFD, leaf temperature and [CO2] were investigated every two weeks during whole growing season. Growth of leaf lamina, leaf sheath, panicle and root was also compared. From this experiment, it was elucidated that acclimation of instantaneous photosynthetic response of rice population to [CO2] occurs in vegetative phase through changes in ratio of leaf area to whole plant dry weight, LAR. But, in reproductive growth phase (i.e. after initiation of panicle formation), the difference between photosynthetic response to [CO2] of population A and that of population B decreased. Although LAR of population C was almost always less than that of population A, there was no difference between the photosynthetic response to [CO2] of population A at 24 degrees C and that of population C at 26 degrees C for its whole growth period. These results are useful to make a model to predict carbon sequestration of rice community, which is an important type of vegetation especially in Asia in future global environmental change.  相似文献   

8.
The purpose of this work was to study the full-scale potential use of human mineralized waste (feces and urine) as a source of mineral elements for plant cultivation in a biological life support system (BLSS). Plants that are potential candidates for a photosynthesizing link were grown on a neutral solution containing human mineralized waste. Spring wheat Triticum aestivum L., peas Pisum sativum L. Ambrosia cultivar and leaf lettuce Lactuca sativa L., Vitaminny variety, were used. The plants were grown hydroponically on expanded clay aggregates in a vegetation chamber in constant environmental conditions. During plant growth, a determined amount of human mineralized waste was added daily to the nutrient solution. The nutrient solution remained unchanged throughout the vegetation period. Estimated plant requirements for macro-elements were based on a total biological productivity of 0.04 kg day−1 m−2. As the plant requirements for potassium exceeded the potassium content of human waste, a water extract of wheat straw containing the required amount of potassium was added to the nutrient solution. The Knop’s solution was used in the control experiments.  相似文献   

9.
Nuclear power generation is now confronted with a very difficult situation all over the world because of the problems of radioactive waste disposal and of the accidents, which have occurred. Nuclear power generation now supplies nearly 30% of total electric power demand in Japan. Therefore it is very difficult to change quickly the construction plans of nuclear facilities already designed. A nuclear fuel reprocessing center is now under construction in Rokkasho-Mura in Aomori Prefecture. If this center starts its operation, small amounts of 14CO2 are expected to be released into the atmosphere and will enter the global cycle. The simulation experiment of 14C trace amounts which enter into ecosystems is now being planned using stable isotope 13C within CEEF (Closed Ecology Experiment Facilities).  相似文献   

10.
Soybean [Glycine max (L.) Merr.] is one of the plant species selected within the European Space Agency (ESA) Micro-Ecological Life Support System Alternative (MELiSSA) project for hydroponic cultivation in Biological Life Support Systems (BLSSs), because of the high nutritional value of seeds. Root symbiosis of soybean with Bradirhizobium japonicum contributes to plant nutrition in soil, providing ammonium through the bacterial fixation of atmospheric nitrogen. The aim of this study was to evaluate the effects of two hydroponic systems, Nutrient Film Technique (NFT) and cultivation on rockwool, and two nitrogen sources in the nutrient solution, nitrate (as Ca(NO3)2 and KNO3) and urea (CO(NH2)2), on root symbiosis, plant growth and seeds production of soybean. Plants of cultivar ‘OT8914’, inoculated with B. japonicum strain BUS-2, were grown in a growth chamber, under controlled environmental conditions.  相似文献   

11.
Environment has significant effects on the nutrient content of field-grown crop plants. Little is known, however, about compositional changes caused by controlled environments in which plants receive only artificial radiation and soilless, hydroponic culture. This knowledge is essential for developing a safe, nutritious diet in a Controlled Ecological Life-Support System (CELSS). Three crops that are candidates for inclusion in a CELSS (rice, wheat, and white potato) were grown both in the field and in controlled environments where the hydroponic nutrient solution, photosynthetic photon flux (PPF), and CO2 level were manipulated to achieve rapid growth rates. Plants were harvested at maturity, separated into discrete parts, and dried prior to analysis. Plant materials were analyzed for proximate composition (protein, fat, ash, and carbohydrate), total nitrogen (N), nitrate, minerals, and amino-acid composition. The effect of environment on nutrient content varied by crop and plant part. Total N and nonprotein N (NPN) contents of plant biomass generally increased under controlled-environment conditions compared to field conditions, especially for leafy plant parts and roots. Nitrate levels were increased in hydroponically-grown vegetative tissues, but nitrate was excluded from grains and tubers. Mineral content changes in plant tissue included increased phosphorus and decreased levels of certain micronutrient elements under controlled-environment conditions. These findings suggest that cultivar selection, genetic manipulation, and environmental control could be important to obtain highly nutritious biomass in a CELSS.  相似文献   

12.
This paper will review the potential of a relatively new type of testbed platform for environmental education and research because of the unique advantages resulting from their material closure and separation from the outside environment. These facilities which we term “modular biospheres”, have emerged from research centered on space life support research but offer a wider range of application. Examples of this type of facility include the Bios-3 facility in Russia, the Japanese CEEF (Closed Ecological Experiment Facility), the NASA Kennedy Space Center Breadboard facility, the Biosphere 2 Test Module and the Laboratory Biosphere. Modular biosphere facilities offer unique research and public real-time science education opportunities. Ecosystem behavior can be studied since initial state conditions can be precisely specified and tracked over different ranges of time. With material closure (apart from very small air exchange rate which can be determined), biogeochemical cycles between soil and soil microorganisms, water, plants, and atmosphere can be studied in detail. Such studies offer a major advance from studies conducted with phytotrons which because of their small size, limit the number of organisms to a very small number, and which crucially do not have a high degree of atmospheric, water and overall material closure. Modular biospheres take advantage of the unique properties of closure, as representing a distinct system “metabolism” and therefore are essentially a “mini-world”. Though relatively large in comparison with most phytotrons and ecological microcosms, which are now standard research and educational tools, modular biospheres are small enough that they can be economically reconfigured to reflect a changing research agenda. Some design elements include lighting via electric lights and/or sunlight, hydroponic or soil substrate for plants, opaque or glazed structures, and variable volume chambers or other methods to handle atmospheric pressure differences between the facility and the outside environment.  相似文献   

13.
As space missions become longer in duration, the need to recycle waste into useful compounds rises dramatically. This problem can be addressed by the development of Controlled Ecological Life Support Systems (CELSS) (i.e., Engineered Closed/Controlled Eco-Systems (ECCES)), consisting of human and plant modules. One of the waste streams leaving the human module is urine. In addition to the reclamation of water from urine, recovery of the nitrogen is important because it is an essential nutrient for the plant module. A 3-step biological process for the recycling of nitrogenous waste (urea) is proposed. A packed-bed bioreactor system for this purpose was modeled, and the issues of reaction step segregation, reactor type and volume, support particle size, and pressure drop were addressed. Based on minimization of volume, a bioreactor system consisting of a plug flow immobilized urease reactor, a completely mixed flow immobilized cell reactor to convert ammonia to nitrite, and a plug flow immobilized cell reactor to produce nitrate from nitrite is recommended. It is apparent that this 3-step bioprocess meets the requirements for space applications.  相似文献   

14.
Wheat was cultivated on soil-like substrate (SLS) produced by the action of worms and microflora from the inedible biomass of wheat. After the growth of the wheat crop, the inedible biomass was restored in SLS and exposed to decomposition ("biological" combustion) and its mineral compounds were assimilated by plants. Grain was returned to the SLS in the amount equivalent to human solid waste produced by consumption of the grain. Human wastes (urine and feces) after physicochemical processing turned into mineralized form (mineralized urine and mineralized feces) and entered the plants' nutrient solution amounts equal to average daily production. Periodically (once every 60-70 days) the nutrient solution was partly (up to 50%) desalinated by electrodialysis. Due to this NaCl concentration in the nutrient solution was sustained at a fixed level of about 0.26%. The salt concentrate obtained could be used in the human nutrition through NaCl extraction and the residuary elements were returned through the mineralized human liquid wastes into matter turnover. The control wheat cultivation was carried out on peat with use of the Knop nutrient solution. Serial cultivation of several wheat vegetations within 280 days was conducted during the experiment. Grain output varied and yield/harvest depended, in large part, upon the amount of inedible biomass returned to SLS and the speed of its decomposition. After achieving a stationary regime, (when the quantity of wheat inedible biomass utilized during vegetation in SLS is equal to the quantity of biomass introduced into SLS before vegetation) grain harvest in comparison with the control was at most 30% less, and in some cases was comparable to the control harvest values. The investigations carried out on the wheat example demonstrated in principle the possibility of long-term functioning of the LSS photosynthesizing link based on optimizations of biological and physicochemical methods of utilization of the human and plants wastes. The possibilities for the use of these technologies for the creation integrated biological-physicochemical LSS with high closure degree of internal matter turnover are discussed in this paper.  相似文献   

15.
To investigate nutrient limitation effect on the community metabolism of closed aquatic ecosystem and possible nutrient limiting factors in the experimental food chains, depletion of inorganic chemicals including carbon, nitrogen and phosphorous was tested. A closed aquatic ecosystem lab module consisting of Chlorella pyrenoidosa and Chlamydomonas reinhardtii, Daphnia magna and associated unidentified microbes was established. Closed ecological systems receive no carbon dioxide; therefore, we presumed carbon as a first limiting factor. The results showed that the algae population in the nutrient saturated group was statistically higher than that in the nutrient limited groups, and that the chlorophyll a content of algae in the phosphorus limited group was the highest among the limited groups. However, the nitrogen limited group supported the most Daphnia, followed by the carbon limited group, the nutrient saturated group and the phosphorus limited group. Redundancy analysis showed that the total phosphorus contents were correlated significantly with the population of algae, and that the amount of soluble carbohydrate as feedback of nutrient depletion was correlated with the number of Daphnia. Thus, these findings suggest that phosphorus is the limiting factor in the operation of closed aquatic ecosystem. The results presented herein have important indications for the future construction of long term closed ecological system.  相似文献   

16.
A study evaluating alternative methods for long term operation of biomass production systems was recently completed at the Kennedy Space Center (KSC). The 418-day study evaluated repeated batch versus mixed-aged production of potato grown on either standard 1/2-strength Hoagland's nutrient solution or solutions including nutrients recycled from inedible plant material. The long term effects of closure and recycling on microbial dynamics were evaluated by monitoring the microbial communities associated with various habitats within the plant growth system (i.e., plant roots, nutrient solution, biofilms within the hydroponic systems, atmosphere, and atmospheric condensate). Plate count methods were used to enumerate and characterize microorganisms. Microscopic staining methods were used to estunate total cell densities. The primary finding was that the density and composition of microbial communities associated with controlled environmental plant growth systems are stable during long term operation. Continuous production resulted in slightly greater stability. Nutrient recycling, despite the addition of soluble organic material from the waste processing system, did not significantly increase microbial density in any of the habitats.  相似文献   

17.
In order to determine a required plant cultivation area which can sustain human life in a closed environment, the material circulating measurement system including a Closed-type Plant Cultivation Equipment (CPCE) in which the metabolic data of plants can be accurately measured has been constructed. According to results from cultivation experiments using rice, the harvest index was 29.9% for 110 days, and the required crop area to supply food, oxygen and water for one person was calculated to be about 111m2, 36m2 and 0.9m2, respectively.  相似文献   

18.
CELSS technology, composed of various subsystems designed to stabilize the environment in closed space can be used to construct the Closed Ecology Experiment Facility. The Closed Ecology Experiment Facility has the character of an Environmental Time Machine. Many environmental researches of studies will, it is proposed, be conducted using this facility. The concept of Closed Ecology Experiment Facility is described, and several research items related to earth science potentially to be conducted using this facility are indicated. As an example of the application, an improved model of climate estimation is discussed.  相似文献   

19.
The main obstacle to using mineralized human solid and liquid wastes as a source of mineral elements for plants cultivated in bio-technical life support systems (BLSS) is that they contain NaCl. The purpose of this study is to determine whether mineralized human wastes can be used to prepare the nutrient solution for long-duration conveyor cultivation of uneven-aged wheat and Salicornia europaea L. plant community. Human solid and liquid wastes were mineralized by the method of “wet incineration” developed by Yu. Kudenko. They served as a basis for preparing the solutions that were used for conveyor-type cultivation of wheat community represented by 5 age groups, planted with a time interval of 14 days. Wheat was cultivated hydroponically on expanded clay particles. To reduce salt content of the nutrient solution, every two weeks, after wheat was harvested, 12 L of solution was removed from the wheat irrigation tank and used for Salicornia europaea cultivation in water culture in a conveyor mode. The Salicornia community was represented by 2 age groups, planted with a time interval of 14 days. As some portion of the nutrient solution used for wheat cultivation was regularly removed, sodium concentration in the wheat irrigation solution did not exceed 400 mg/L, and mineral elements contained in the removed portion were used for Salicornia cultivation. The experiment lasted 4 months. The total wheat biomass productivity averaged 30.1 g · m−2 · day−1, and the harvest index amounted to 36.8%. The average productivity of Salicornia edible biomass on a dry weight basis was 39.3 g · m−2 · day−1, and its aboveground mass contained at least 20% of NaCl. Thus, the proposed technology of cultivation of wheat and halophyte plant community enables using mineralized human wastes as a basis for preparing nutrient solutions and including NaCl in the mass exchange of the BLSS; moreover, humans are supplied with additional amounts of leafy vegetables.  相似文献   

20.
空间高等植物培养装置用于中国天宫二号空间实验室开展微重力条件下高等植物生长机理研究.该装置由高等植物培养模块、生命保障模块、实时在线检测模块和返回单元等功能单元组成,可实现高等植物空间长周期培养,在轨启动生物实验,实时在线观察和荧光监测,水分循环利用及营养供给,模拟太阳长短日照周期控制与检测,环境温度测量与控制,CO2浓度调节,有害气体去除及航天员回收部分样品等功能.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号