首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 715 毫秒
1.
针对气动光学效应的RANS计算方法研究   总被引:1,自引:0,他引:1  
针对气动光学效应研究的特殊需求,发展了相应的RANS计算方法.首先对常规湍流模型进行评估,选出对平均密度空间分布预测较好的湍流模型;同时发展了光波折射率脉动值的输运方程,用以模化脉动密度对光学成像的畸变效应.针对一典型光学头罩作为研究对象,运用本文发展的计算方法对光学窗口流场的气动光学效应进行了计算和分析.  相似文献   

2.
与一般红外成像探测系统不同的是,高速红外成像探测系统面临着严重的气动光学效应的干扰,分析和研究气动光学效应并采用合适的校正方法是当前高速红外成像探测技术研究的关键技术之一。本文采用仿真设计计算的方法对气动光学效应进行了初步分析和实验论证,为气动光学效应校正技术的研究提供了一定的理论依据。  相似文献   

3.
与一般红外成像系统不同的是,高速红外成像探测系统面临着严重的气动光学效应的影响.其中气动热效应的影响将降低红外成像系统光学窗口的工作性能,甚至会对光学窗口产生严重的破坏作用.分析和研究气动热效应的形成机理、影响程度等,并采用合适的解决方案是当前国内外高速红外成像探测技术研究的关键技术之一。本文采用仿真设计、理论计算等方法分析了高速红外成像探测系统的气动热效应影响程度,并针对典型的光学窗口外部制冷方案等进行了初步分析计算;参考国外研究资料,提出了高速红外成像探测系统的理想气动外形和内部冷却方案,为今后高速红外成像探测系统的气动热效应防护措施等方面的研究提供了一定的参考依据。  相似文献   

4.
杨博  于贺  樊子辰 《航空学报》2024,(4):120-133
针对高超声速飞行器在大气层内飞行过程中采用自主天文导航时,气动光学效应导致的光学传感器成像畸变严重干扰导航精度的问题,提出一种在微观能量变化机制层面探究气动光学效应时变误差的方法。该方法基于光子传输理论分析光子与湍流分子的相互作用机制,建立光子在高速流场中的传输模型,对光子在湍流传输过程中的能量分布进行统计。通过建立微观光子体系下的气动光学效应评价函数,得到气动光学效应的时变误差描述,统一了微观能量分析与宏观几何光学之间的关系,利用光子微观方法进行数值仿真分析,并将仿真结果与风洞试验结果进行了对比,为高超声速飞行器气动光学效应的研究提供了新的研究思路。  相似文献   

5.
采用基于N-S方程的CFD方法,通过计算前后平行放置的双翼和三翼的干扰流场,对悬停状态旋翼桨叶之间的气动干扰机理进行了数值探讨;在此基础上,进行了2种桨叶片数、2种桨距及2种桨尖马赫数情况的旋翼悬停流场对比计算,模拟它们对旋翼气动性能和桨叶间气动干扰作用的影响,得到一些与工程实际吻合的现象和结论。  相似文献   

6.
超声速自由旋涡气动窗口的气动光学特性计算与分析   总被引:1,自引:0,他引:1  
笔者讨论了超声速自由旋涡气动窗口的气动结构,对设计的超声速自由旋涡气动窗口射流流场及超声速自由旋涡气动窗口的光学性能进行了分析研究。研究了自由涡射流对透射激光产生的气动透镜效应,给出了计算结果。  相似文献   

7.
进行了基于网格变形的伴随方法在翼型气动优化设计中应用的研究。随着集成了伴随方法的流场求解器的普及和效率的不断提高,采用梯度法进行翼型气动优化设计的主要计算花费逐渐由计算梯度对流场变量的敏感度(或流场敏感度)转变为计算梯度对网格变形的敏感度(或网格敏感度),后者的求解通常采用有限差分方法,计算花费较高。在传统伴随方法(或流场伴随方法)的基础上,引入了基于网格变形的伴随方法(或网格伴随方法),采用网格伴随方法计算梯度,可以大幅度减少梯度计算花费,提高翼型气动优化设计的效率。  相似文献   

8.
采用CFD+CAA的混合方法对三维湍流激励的气动噪声进行了仿真计算。流场计算部分采用有限体积法求解RANS方程,得到定常的背景流场。在流场计算的基础上,基于SNGR(Stochastic Noise Generation and Radia-tion)方法构造声学控制方程LEE的右端源项,采用高阶间断有限元法(DG)求解线性欧拉方程(LEE)得到后视镜的非定常声场。适用于复杂外形的气动噪声仿真计算,是一种非常实用的气动噪声工程计算方法。  相似文献   

9.
发展了一种基于计算流体力学(CFD)的非定常气动特性预测方法,计算方法包括了动量源模型、预处理方法、非结构嵌套网格和Spalart-Allmaras(S-A)湍流模型等技术.通过计算悬停Caradonna-Tung算例和俯仰振荡NACA0012算例,验证了计算方法模拟双旋翼微型飞行器动态流场的有效性.数值模拟了双旋翼微型飞行器动态流场,给出了非定常气动系数的迟滞曲线,分析了缩减频率、前飞速度和螺旋桨转速对非定常气动特性的影响.计算结果表明:力矩系数迟滞效应随缩减频率、前飞速度和螺旋桨转速增大而增大,升力系数迟滞效应随缩减频率和前飞速度增大而增大,但基本不随螺旋桨转速变化而变化.   相似文献   

10.
基于神经网络的翼型优化设计方法研究   总被引:2,自引:0,他引:2  
针对气动外形优化设计中,气动特性计算可信度要求与巨大计算量之间的矛盾,采用一种基于神经网络构建适用于气动外形优化设计的气动特性计算模型的计算方法.同时,以神经网络近似模型来代替原有的流场数值计算气动分析程序,结合基于遗传算法建立的气动外形优化搜索方法,建立了一种新的翼型优化设计方法.实际翼型优化设计算例表明该方法有效减少了计算量,提高了工作效率,可以获得具有高可信度的设计结果.  相似文献   

11.
王科雷  周洲  祝小平  郭佳豪  范中允 《航空学报》2020,41(1):123118-123118
基于分布式电推进飞行器创新性发展理念,以螺旋桨滑流耦合下机翼气动效率最优为目标开展螺旋桨诱导流场重构设计研究。首先,通过构建基于动量源方法的准定常数值模拟技术,建立了螺旋桨桨盘载荷分布与诱导流场特性之间的联系;然后,基于对螺旋桨桨盘气动载荷分布曲线的参数化控制,提出了螺旋桨诱导流场重构优化设计思想及设计方法;最后,通过相关设计结果的对比分析验证了所提出螺旋桨诱导流场重构设计思想及设计方法的有效性和可靠性。结果表明:与等拉力最小诱导损失螺旋桨相比较,基于所提出诱导流场重构设计思想设计得到的螺旋桨最优气动载荷分布耦合下的机翼气动效率得到显著改善,在本文设计状态下,机翼翼段计算升力相对提高10.40%,计算阻力相对降低7.05%,计算升阻比相对增大18.77%。  相似文献   

12.
基于BOS的气动光学畸变测量与波前重构   总被引:3,自引:0,他引:3  
通过系统集成与开发,研究了基于背景纹影(BOS)的高分辨率气动光学畸变测量方法。分析了PIV方式的BOS系统结构与特征。在BOS中,背景点的位移受实验装置的几何参数影响,通过调整这些参数能够改变BOS成像系统的分辨率以及观测区域的大小,这是传统纹影难以实现的。通过简化光路,定量分析了BOS的灵敏度与分辨率之间的相互制约关系。在搭建BOS系统的基础上,研究了蜡烛火焰上方热对流导致的气动光学效应,并根据光线偏折角与光程差之间的关系,实现了气动光学波前重构。结果表明,蜡烛火焰造成的平面波前畸变较好的反映了流场非均匀性带来的气动光学效应,而且其空间分辨率远远高于传统的干涉测量技术。  相似文献   

13.
压气机叶片气动阻尼的改善设计   总被引:2,自引:2,他引:0  
郭雪莲  李琳 《航空动力学报》2012,27(8):1855-1860
针对气动阻尼在强迫响应分析中的应用现状,提出了一种在叶型基本确定的条件下进一步设计气动阻尼的方法.该方法只对叶片基元级的积叠轴做微小的调整,这种调整对叶栅流场气动特性和固有频率的影响很小,可以忽略不计.研究了积叠轴调整对叶片气动阻尼的影响,得出在不需要大量流场计算的条件下,即可判断如何调整叶片积叠轴以达到增加气动阻尼目的的结论.在分析中用振型相似度衡量叶片模态振型与气动阻尼比的关系,相似度越小气动阻尼比越大.   相似文献   

14.
对于飞行器气动设计,通过实验或CFD计算获得所有设计状态处流场信息成本高、耗时长,难以满足工程应用要求。利用基于本征正交分解(POD)降阶模型结合相应的插值方法,只需要通过实验或CFD计算获取有限个数的采样流场,可以快速预测出具有满足精度要求的设计状态处流场信息。首先,证明对POD基系数插值获取预测流场与对采样流场直接插值获取预测流场的等价性,并分析采样流场分布的要求。然后,以三段翼型流场作为研究对象,POD降阶模型分别与三次样条插值和径向基插值结合,实现设计状态处流场信息快速预测。最后,通过将流场预测结果与相同条件下的流场CFD计算结果对比,表明了POD降阶模型结合两种插值方法的各自特性。  相似文献   

15.
高超声速飞行器表面温度分布与气动热耦合数值研究   总被引:4,自引:0,他引:4  
针对高超声速飞行器热防护设计中的高温气体非平衡效应问题和气动热环境精确预测问题,基于流场的非平衡Navier-Stokes方程、表面的能量守恒方程和内部的热传导方程,考虑流场的非平衡效应、表面的热辐射效应、催化效应和烧蚀效应以及热防护层内部的热传导效应,建立了初步的表面温度分布与气动热的耦合计算方法,完善了高超声速飞行器气动物理流场计算软件(AEROPH_Flow)。在表面材料为碳-碳(C-C)条件下,对飞行高度为65km和飞行速度为8,10km/s的半球以及飞行高度为50km和飞行速度为8km/s的球锥模型,开展了表面温度分布与气动热的耦合计算,验证了计算方法和计算软件,分析了表面温度分布对气动热环境的影响。研究结果表明:表面温度分布对气动热的计算结果有较大影响,在气动热环境的预测中,不仅要考虑热化学非平衡效应和表面催化效应的影响,还要考虑表面温度分布的影响,最好是采用表面温度分布与气动热耦合计算的方法,以减小表面温度分布对气动热计算结果的影响。为此,需要发展完善非平衡流场/表面催化和烧蚀/热传导温度场(气/表/固)的计算模型、耦合求解技术和计算软件,实现对高超声速飞行器的真实飞行条件下高温气体非平衡效应和气动热环境的精确模拟。  相似文献   

16.
基于非结构网格CFD技术的旋翼气动噪声计算方法研究   总被引:3,自引:0,他引:3  
将基于非结构网格技术的旋翼流场CFD计算方法与基于FW-H和Kirchhoff方程的声学方法相结合,建立了一套既适合于直升机旋翼厚度、载荷和桨-涡干扰噪声,又适合于跨声速高速脉冲噪声的综合计算模型。为提高旋翼流场及桨叶表面气动载荷计算的精度,主控方程的求解采用了三维可压非定常的N-S方程,网格划分则使用非结构运动嵌套网格方法。在噪声计算中,通过FW-H方法计算旋翼的厚度噪声和载荷噪声,并选取能够包含流场非线性区域的旋转面作为Kirchhoff积分面,由Kirchhoff方法计算包含四极子项的高速脉冲噪声。应用该模型,以AH-1旋翼为算例,计算了不同飞行状态下的旋翼气动噪声,并与可得到的试验结果进行比较,验证了方法的有效性。然后,着重对两种声学方法对计算结果的影响进行了对比研究,并分析了旋翼厚度噪声、载荷噪声和四极子噪声的特性。  相似文献   

17.
针对一种气动导纳的数值识别方法进行研究。基于二维不可压缩URANS方法,选用SSTk-ω湍流模型,通过在来流中给定单一频率的竖向谐波速度分量,计算相应的桥梁断面气动力荷载时程,识别桥梁断面的气动导纳。首先考查来流脉动特性在计算域内的自保持能力,随后再对平板和桥梁断面的气动导纳进行识别,所得结果与理论解和试验值相比较,并讨论流场初始化条件的影响。结果表明:足够小的网格尺寸和时间步长是来流脉动不发生明显衰减的必要条件;平板的气动导纳识别结果与Sears函数高度吻合;数值识别的桥梁断面升力气动导纳在低频段与Sears函数一致,在高频段略低,但与试验值较接近;力矩气动导纳与Sears函数有较大差异,但与试验值基本吻合;流场初始化条件对计算效率有影响。  相似文献   

18.
针对一种气动导纳的数值识别方法进行研究。基于二维不可压缩URANS方法,选用SSTk-ω湍流模型,通过在来流中给定单一频率的竖向谐波速度分量,计算相应的桥梁断面气动力荷载时程,识别桥梁断面的气动导纳。首先考查来流脉动特性在计算域内的自保持能力,随后再对平板和桥梁断面的气动导纳进行识别,所得结果与理论解和试验值相比较,并讨论流场初始化条件的影响。结果表明:足够小的网格尺寸和时间步长是来流脉动不发生明显衰减的必要条件;平板的气动导纳识别结果与Sears函数高度吻合;数值识别的桥梁断面升力气动导纳在低频段与Sears函数一致,在高频段略低,但与试验值较接近;力矩气动导纳与Sears函数有较大差异,但与试验值基本吻合;流场初始化条件对计算效率有影响。  相似文献   

19.
一种基于CFD的叶轮机非定常气动力组合建模方法   总被引:3,自引:3,他引:0  
为了获得一个准确高效的非定常空气动力学模型并将其应用于叶轮机叶片颤振特性分析中去,论文发展了一种基于CFD方法的叶轮机非定常气动力组合建模方法,可以快速计算叶轮机叶片在等相角差振动时的气动阻尼系数。运用小扰动流场的叠加原理,通过不同通道数模型的非定常流场求解(通常需要两次或三次),针对流场的周期性边界条件,组合分析得到一系列更多通道数情况下的非定常气动力低阶模型。基于这种降阶模型计算的气动阻尼系数与直接的CFD方法计算结果吻合很好,计算效率提高10倍以上。  相似文献   

20.
F-35战斗机气动及隐身特性分析   总被引:1,自引:1,他引:0  
姜浩  昂海松 《飞机设计》2010,30(6):1-10
以F-35战斗机为研究目标,对目标体进行三维外形重建,并对重建后的模型进行气动及隐身特性的计算和分析,首先采用了基于飞机三视图进行轮廓线提取来重建F-35全机理论外形的方法,引入了基于草图跟踪的CATIA三视图的标定,大大地提高了模型重建的精度。其次采用非结构网格对F-35的计算区域进行网格划分,采用EULER方程完成了F-35在亚声速、跨声速及超声速等飞行条件下的流场计算,分析了不同状态下的升力、阻力和大迎角气动特性。最后利用曲面像素法对F-35全机高频雷达目标特性进行了计算,提出了一种基于IGS数据转换格式的隐身计算网格生成方法,比较了不同俯仰角及方位角下的RCS特性曲线,分析了对RCS影响比较大的部件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号