共查询到20条相似文献,搜索用时 20 毫秒
1.
低温和应变率对HTPB推进剂压缩力学性能影响 总被引:2,自引:0,他引:2
采用单轴压缩实验方法,分析了低温(-40~25℃)和应变率(1/300~1/12 s-1)对HTPB推进剂压缩力学性能的影响,得到了不同温度和应变率条件下推进剂的压缩应力-应变关系。结果表明,推进剂压缩强度和压缩模量随温度的降低和应变率的增加而逐渐增加,且均与应变率具有良好的线性对数关系(lg[σ.k(T)]=a+blg.ε和lg[E.f(T)]=c+dlg.ε),利用该关系式可对推进剂压缩力学性能进行预测。通过双因素方差分析表明,低温和应变率均对推进剂压缩力学性能具有显著影响。其中,低温对压缩模量的影响更加显著,而应变率对压缩强度和压缩应变的影响更加显著。 相似文献
2.
复合固体推进剂是一种含能非均质颗粒填充材料,其基体聚合物分子通过物理缠结及氢键作用吸附于填料表面,产生基体-填料界面相互作用,这种相互作用使基体聚合物交联网络分子的运动受到限制。以高氯酸铵(AP)级配及含量不同的端羟基聚丁二烯(HTPB)推进剂为研究对象,通过动态力学试验、溶胀试验、单向拉伸试验、循环拉伸试验,探究了AP级配及含量变化引起的HTPB固体推进剂界面约束作用差异,并探究其对推进剂结构及性能的多维度影响。结果表明:随着细粒度AP含量及AP总含量的提高,约束区域占比增加,基体交联网络分子受限作用增强,HTPB固体推进剂界面相互作用提高,单向拉伸状态下的推进剂强度、模量提高,伸长率下降;循环载荷作用下,约束作用则提高了能量耗散过程,加剧HTPB固体推进剂疲劳损伤进程。 相似文献
3.
4.
醇胺类键合剂对HTPB推进剂力学性能和工艺性能的影响及分析 总被引:1,自引:0,他引:1
较系统地分析了醇胺类键合剂用量及规格对HTPB推进剂力学及工艺性能的影响。通过红外光谱图及实验研究进行了键合剂作用机理分析。对醇胺类键合剂在HTPB推进剂系统中的应用性能进行了验证和和探索。 相似文献
5.
采用扫描电镜(SEM)对低温动态单轴拉伸后的HTPB推进剂断面形貌进行了观察,分析了不同加载条件下推进剂的细观损伤形式。结合盒维数数值方法,进一步讨论了推进剂的细观损伤程度变化情况。结果表明,热老化后HTPB推进剂在低温动态加载时,其细观损伤更复杂、更严重;温度、应变率和热老化均能改变推进剂的细观损伤形式,存在细观损伤发生改变的临界加载条件;随温度持续降低、应变率持续升高及热老化时间增长,盒维数值最终保持在1.866附近,即推进剂的细观损伤程度不再发生改变。研究结果对分析低温点火时战术导弹固体火箭发动机药柱的结构完整性具有一定参考价值。 相似文献
6.
7.
为了研究端羟基聚丁二烯(HTPB)推进剂细观损伤及传力特性,基于粘超弹性材料本构和双线性内聚力模型,结合DIGIMAT建立了推进剂代表体积单元(RVE)模型,通过应力集中因子和载荷传递系数定量分析了颗粒和基体之间的载荷传递及应力集中程度。结果表明,颗粒位置随机并不会对力学性能造成明显的影响,但颗粒发生“脱湿”的位置改变可能会影响裂纹扩展的路径;颗粒的长径比越大,应力集中现象越明显,相较于椭圆形颗粒,圆形颗粒的界面更容易发生“脱湿”损伤;大颗粒含量越高,初始阶段颗粒的应力集中程度越大,基体的应力集中程度越小,载荷传递的效率越高,脱粘后变化趋势相反,同时大颗粒含量的增加会加快界面损伤的进程,加剧界面损伤的程度;颗粒体积分数越大,颗粒和基体的应力集中因子都将逐渐增加,初始阶段载荷传递效率越低,脱粘后载荷传递效率越高。 相似文献
8.
9.
10.
NEPE推进剂/衬层粘接界面细观力学性能/结构研究 总被引:12,自引:0,他引:12
研究了不同组成的NEPE推进剂/衬层粘接界面细观力学性能和结构的差异,以及对应粘接界面贮存过程中粘接性能和破坏方式的变化规律,探索了粘接界面的细观力学性能、结构与破坏方式的内在关联,初步提出NEPE推进剂/衬层粘接界面失效模式。试验结果表明,粘接界面细观力学性能、结构与界面粘接质量相关,是影响界面失效模式的主要因素。粘接界面具有高模量、高硬度层,N元素含量高且有明显梯度变化时,粘接质量较好,发生内聚破坏,反之发生界面破坏或混合破坏;老化过程中,粘接界面的模量和硬度降低、N元素的含量明显降低决定粘接界面依次发生内聚破坏、混合破坏和界面破坏。 相似文献
11.
NEPE推进剂装药界面粘接问题是制约NEPE推进剂推广应用的技术瓶颈之一,急需有效的细观结构表征技术,以揭示NEPE推进剂装药界面形成机理。采用Micro-CT技术,开展了NEPE推进剂/衬层/绝热层界面细观结构研究,发现Micro-CT图像可明显区分界面各相以及各相的基体与填充物,可识别不同的固体填充物;绝热层/衬层界面存在有锯齿状的镶嵌结构的扩散层,厚度不超过10μm;推进剂与衬层之间有一定的扩散,存在明显的推进剂与衬层基体富集层,在推进剂一侧,还形成40~80μm的HMX颗粒富集层。 相似文献
12.
针对双(2,2-二硝基丙基)缩甲醛/缩乙醛(BDNPF/A)增塑的端羟基四氢呋喃-环氧乙烷共聚醚(PET)推进剂/衬层粘接体系,采用分子动力学模拟和高效液相色谱法,研究关键组分在界面层的迁移规律,并考察其对粘接性能的影响。结果表明,固化温度对固化催化剂三苯基铋(TPB)的扩散速率影响显著,随着固化温度的提升,TPB的扩散速率呈数量级增加;BDNPF/A增塑剂中BDNPA在高温下扩散速率明显加快,BDNPF的扩散速率受温度影响较小,BDNPA对PET/端羟基聚丁二烯(HTPB)界面层的固化形成过程影响比BDNPF大;PET/HTPB界面层形成后,甲苯二异氰酸酯(TDI)扩散缓慢,提高TDI用量或增加固化时间有助于界面层扩展;当固化温度为343 K、固化参数为1.6、固化时间为5 d时,界面层中BDNPF/A增塑剂含量下降至0.1%,界面粘接强度提升至0.95 MPa。 相似文献
13.
为分析双折线损伤模型参数对复合固体推进剂细观损伤及宏观非线性力学性能的影响,采用分子动力学方法建立复合固体推进剂颗粒夹杂模型,根据Surface-based cohesive方法,在高氯酸铵(AP)颗粒与基体之间的界面处设置接触损伤。利用有限元方法对具有不同损伤参数的颗粒夹杂模型进行计算,并对比数值仿真结果。结果表明,损伤起始应力对复合固体推进剂抗拉强度、最大延伸率有较大的影响;界面初始刚度在一定程度内的变化,对复合固体推进剂宏观力学性能及细观损伤形貌影响较小;界面失效距离主要影响复合固体推进剂的最大延伸率。 相似文献
14.
未老化NEPE推进剂/衬层粘接试件拉伸失效模式研究 总被引:1,自引:0,他引:1
采用原位拉伸扫描电镜观测不同温度下NEPE推进剂/衬层粘接界面裂纹扩展规律,得出不同温度下裂纹产生位置均出现在推进剂和衬层连接处,且裂纹的扩展存在相互竞争关系;粘接性能较好时,粘接界面的好坏主要取决于推进剂/衬层界面附近推进剂性能。重点考察了会引起推进剂"脱湿"的HMX界面,利用纳米压痕仪及动态力学实验,得出当推进剂中含NPBA时,HMX周围存在一高模量层,且该高模量层的动态储能模量与温度呈反向关系。该高模量层的存在或消失会引起推进剂在宏观性能上发生变化,进而影响推进剂/衬层试件宏观力学性能。 相似文献
15.
16.
纳米NiO/CNTs和Co3O4/CNTs对AP及HTPB/AP推进剂热分解的影响 总被引:2,自引:0,他引:2
以碳纳米管(CNTs)为载体,采用化学沉淀法制备了纳米N iO/CNTs、Co3O4/CNTs复合粒子,应用TEM、SEM、XRD、EDS、BET等方法对产物形貌、结构进行了表征,并用DSC研究了纳米N iO、Co3O4、CNTs等单一粒子及纳米N iO/CNTs、Co3O4/CNTs复合粒子对AP及HTPB/AP推进剂热分解的催化作用。结果表明,纳米N iO/CNTs、Co3O4/CNTs复合粒子结晶好、包覆均匀、比表面积大。纳米N iO、Co3O4、CNTs等单一粒子和纳米N iO/CNTs、Co3O4/CNTs复合粒子均能使AP及HTPB/AP推进剂热分解的高温分解峰温降低、表观分解热增加,表现出良好的催化性能。相比而言,纳米复合粒子的催化性能均优于其相应单一组分,表现出良好的正协同作用。复合粒子中以Co3O4/CNTs复合粒子的催化效果最为显著,使AP和HTPB推进剂的高温分解峰温降低了153.06℃和60.0℃,使总表观分解热分别增加了1 163 J/g和920 J/g。 相似文献
17.
为了研究细观尺度下推进剂/衬层/绝热层界面多角度拉伸过程中的变形特点与破坏模式,使用拉压力传感器、三目金相显微镜等设备获取多角度拉伸过程中的应力数据与界面形貌演化图像,采用数字图像相关技术对多角度拉伸过程的图像序列进行处理,获取了细观尺度下界面多角度拉伸过程中的应变场演化情况。实验结果表明,粘接试件在0°拉伸时的抗拉强度最大,90°拉伸时的伸长率最大;随着拉伸角度的增加,应力-应变曲线的加载段和卸载段均逐渐变缓,表面的应变集中区域由衬层/绝热层界面附近,变化为推进剂/衬层界面附近,最后两个界面附近均出现了明显的应变集中现象;45°拉伸时,推进剂与衬层表面应变随拉伸载荷的增加而增加,绝热层的模量高,应变变化幅度小,推进剂表面的平均正应变高于衬层,平均切应变低于衬层。所采用的实验方法可较好地测量界面在多角度拉伸过程中的变形,为发动机粘接结构的完整性分析提供参考。 相似文献
19.
添加剂HMX对AP/HTPB复合推进剂燃速行为的影响 总被引:1,自引:1,他引:1
本文研究了添加剂HMX对AP丁羟推进剂燃速的影响。试验研究发现:在AP/HTPB复合推进剂中加入HMX时,其燃速降低;随着推进剂中HMX含量的增加,其燃速压力指数呈现出先下降后上升的“情形”;当HMX的粒度变细时,推进剂的压力指数显著降低。我们基于BDP模型的气相火焰结构设想,并强调燃烧表面上HMX熔层在燃烧过程中的作用,提出了一个多重竞争火焰—凝聚相结构和反应模型。它能解释AP—HMX双元系统丁羟推进剂的燃速行为和现象,并能对这种推进剂的燃速和压力指数调节的各种途径进行预示。此外,还提出了BDP和GDF模型一致性的设想和一些等价概念。 相似文献