首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
Since 1971, numerous balloons have been launched from the Japanese balloon base, the Sanriku Balloon Center (SBC). Through these years, balloon technologies have been developed continuously and many scientific achievements have resulted. Recently, however, because of the limited area of the launching pad of the SBC, we have been faced with the difficulty of safely launching large balloons. To solve this issue, we decided to move the balloon base from the SBC to the Taiki Aerospace Research Field (TARF) in northern Japan. The TARF had an existing huge hanger and a paved launch pad capable of being utilised for balloon operations. To evolve the TARF into a new balloon base, new balloon facilities have been constructed at the TARF and equipment was transferred from the SBC to the TARF during July 2007 and March 2008. The SBC was closed in September 2007, and the new base became operational in May 2008. The new base at the TARF is designed to launch larger balloons with greater safety and to perform balloon operations more effectively than ever before. In the summer of 2008, we carried out the first series of the balloon campaign at the TARF, and succeeded in two engineering flights of stratospheric balloons. By the success of these flights, we have verified that the whole system of the new balloon base is well established.  相似文献   

2.
Polar patrol balloon experiments were carried out at Syowa Station in Antarctica from 2002 to 2004. Two balloons were launched for the purpose of observing phenomena in the polar atmosphere and one was done for the observation of high energy cosmic electrons. We developed a new housekeeping system including communication device using the Iridium satellite network, an auto-level controller driven by a new program for keeping the flight altitude, and a power management system for solar cells combined with secondary batteries.Two balloons for studying phenomena in the Antarctic atmosphere launched on January 13, 2003 made flights for 18 days and 25 days, respectively. All the housekeeping system worked well during the flights as we expected. Based on these experiments, we adjusted parameters for the altitude control system and the power management system. We launched a balloon for the cosmic electron observation on January 4, 2004. It flew 13 days around the Antarctica with the perfect operation of the onboard housekeeping system. We hope that fruitful scientific results will be obtained from these long-duration flights.  相似文献   

3.
Launching a large balloon in a limited launching field is a long standing problem in Japan. The largest balloon ever launched successfully was 200,000 m3 in volume. It was launched in 1973. A larger balloon with a volume of 500,000 m3 was tried later, but it burst during the ascending phase. For launching balloons with a large lift exceeding 500 kg, the conventional static launching method had the most serious problem with possible damage to the polyethylene film of the balloon caused by the holding mechanism. After that, we had developed a new static launching method to launch balloons with a total lift of 1.0 ton. For launching a large balloon with a total lift above 1.5 ton, the new static launching method had a weak point in that if there was an air bubble in the folded part of the balloon, it may puncture the balloon as it is pushed by a spool. To avoid this problem, we developed a semi-dynamic launching method in 1999 using a launcher fixed to the ground leaving a freedom of rotation around the vertical axis. We have launched some balloons using the method and have gradually enriched our experience in using this system.In 2003, we successfully launched a balloon with a volume of 500,000 m3 by using the method. This balloon was made of polyethylene films with a thickness of 20 μm and it is the largest balloon ever launched in Japan.  相似文献   

4.
Over 500 small scientific balloons have been launched by the University of Wyoming's Atmospheric physics Group from 26 locations over the globe in a study of stratospheric aerosol physics and chemistry which began in 1971. These flights have led to a basic understanding of the evolution of sulfurous gases, injected into the stratosphere by major volcanic eruptions, into sulfuric acid aerosol droplets. The recent use of new, thin film balloon technology, to reduce cost and simplify launch techniques, has been a major advantage to the program.  相似文献   

5.
Balloons fabricated of thin polyethylene materials have provided relatively inexpensive and reliable scientific research platforms for approximately three decades. Reliability of the modern day balloon, as launched by the U.S.A. National Scientific Balloon Facility (NSBF), has been approximately 85%. Recent balloon failures, coupled with an increased occurrence of catastrophic failures, created grave concern over the integrity of the present balloon inventory of the U.S.A National Aeronautics and Space Administration (NASA). An investigative team was established by NASA to review the circumstances surrounding the catastrophic balloon failures, determine the cause and to make recommendations to correct the problem and to prevent its reoccurrence. The most probable cause of failure as determined by the investigation was the polyethylene balloon film, although the film had passed the established standard quality control measures of the film manufacturer. The approach, findings, and conclusions of the investigation are presented along with planned procedures to assure future quality balloon film for NASA balloons.  相似文献   

6.
The design and operation of a high altitude scientific balloon requires adequate knowledge of the thermal characteristics of the balloon to make it safe and reliable. The thermal models and dynamic models of altitude scientific balloons are established in this paper. Based on the models, a simulation program is developed. The thermal performances of a super pressure balloon are simulated. The influence of film radiation property and clouds on balloon thermal behaviors is discussed in detail. The results are helpful for the design and operate of safe and reliable high altitude scientific balloons.  相似文献   

7.
Development of a balloon to fly at higher altitudes is one of the most attractive challenges for scientific balloon technologies. After reaching the highest balloon altitude of 53.0 km using the 3.4 μm film in 2002, a thinner balloon film with a thickness of 2.8 μm was developed. A 5000 m3 balloon made with this film was launched successfully in 2004. However, three 60,000 m3 balloons with the same film launched in 2005, 2006, and 2007, failed during ascent. The mechanical properties of the 2.8 μm film were investigated intensively to look for degradation of the ultimate strength and its elongation as compared to the other thicker balloon films. The requirement of the balloon film was also studied using an empirical and a physical model assuming an axis-symmetrical balloon shape and the static pressure. It was found that the film was strong enough. A stress due to the dynamic pressure by the wind shear is considered as the possible reason for the unsuccessful flights. A 80,000 m3 balloon with cap films covering 9 m from the balloon top will be launch in 2011 to test the appropriateness of this reinforcement.  相似文献   

8.
Activities in scientific ballooning in Japan during 1998–1999 are reported. The total number of scientific balloons flown in Japan in 1998 and 1999 was sixteen, eight flights in each year. The scientific objectives were observations of high energy cosmic electrons, air samplings at various altitudes, monitoring of atmospheric ozone density, Galactic infrared observations, and test flights of new type balloons. Balloon expeditions were conducted in Antarctica by the National Institute of Polar Research, in Russia, in Canada and in India in collaboration with foreign countries' institutes to investigate cosmic rays, Galactic infrared radiation, and Earth's atmosphere. There were three flights in Antarctica, four flights in Russia, three flights in Canada and two flights in India. Four test balloons were flown for balloon technology, which included pumpkin-type super-pressure balloon and a balloon made with ultra-thin polyethylene film of 3.4 μm thickness.  相似文献   

9.
The first campaign of the Polar Patrol Balloon (PPB) experiment (1st-PPB) was carried out at Syowa Station in Antarctica during 1990–1991 and 1992–1993. Based on the results of the 1st-PPB experiment, the next campaign (2nd-PPB) was carried out in the austral summer of 2002–2003. This paper will present stratospheric conductivity results from the 2nd-PPB experiment. In that experiment, three balloons were launched for the purpose of upper atmosphere physics observation (three balloons). Payloads of these three flights were identical with each other, and were launched as close together in time as allowed by weather conditions to constitute a cluster of balloons during their flights. Such a “Balloon Cluster” is suitable to observe temporal evolution and spatial distribution of phenomena in the ionospheric regions and boundaries that the balloons traversed during their circumpolar trajectory. More than 20 days of simultaneous fair weather 3-axis electric field and stratospheric conductivity data were obtained at geomagnetic latitudes ranging from sub-auroral to the polar cap. Balloon separation varied from ∼60 to >1000 km. This paper will present stratospheric conductivity observations with emphasis on the temporal and spatial variations that were observed.  相似文献   

10.
The use of different types of balloons for the investigation of the troposphere and lower stratosphere is reviewed with a special emphasis on the application for the next 10 years. The instrumentation currently flown aboard balloons or under development is described. Some possible scientific objectives of such balloon experiments are presented. The specific applications of the different types of balloons available within the next few years for scientific flights are discussed.  相似文献   

11.
Current status of scientific ballooning in Japan is reviewed. First, I describe successful application of balloon technologies to construct a vessel of transparent plastic film, to contain about 1000 tons of liquid scintillator in Kamioka Liquid Scintillator Anti-Neutrino Detector (KamLAND). KamLAND is a project to study neutrino oscillation phenomena, by detecting anti-neutrinos produced in distant nuclear reactors. Next, I describe high altitude balloons developed by the ISAS balloon group. They developed balloons made from ultra-thin polyethylene film, producing a balloon of volume 60,000 m3 which successfully reached an altitude of 53 km in 2002. This is a world record, the greatest altitude that a balloon has ever achieved. ISAS is applying further effort to develop balloons with even thinner films, to achieve a higher altitude than 53 km. Other recent activities by the ISAS balloon group are briefly described.I also review scientific ballooning projects now operating in Japan, particularly focusing on the Balloon-Borne Experiment with a Superconducting Spectrometer (BESS) program. This is a US–Japan collaborative program that has carried out very precise measurements of antiprotons, protons and other components in primary cosmic rays, as well as measuring the fluxes of atmospheric muons and other components. The results of these observations give us important information to improve our understanding of the production mechanism of antiprotons observed in the primary cosmic rays. The data are also important for analysis of atmospheric neutrino events observed by Super-Kamiokande and other ground-based neutrino detectors. Future prospects of BESS and other balloon-borne cosmic-ray research programs are also presented.  相似文献   

12.
Various balloon systems intended as scientific platforms to float in the atmosphere of Venus at altitudes between about 35 and 65 km are briefly reviewed. Previous predictions of the altitude oscillations of balloons filled with helium gas and water vapor are largely confirmed through numerical simulation and analysis. The need for refined thermal modelling is emphasised. Several novel technical concepts are introduced. It is concluded that phase change balloons would be more suitable than non-condensing super pressure gas balloons when repeated altitude excursions are a mission requirement.  相似文献   

13.
A new static-launch method that we have developed as an improvement of our former method is described. The key procedure is to extend a whole balloon vertically upon the launcher before release, with squeezing the top bubble of the balloon by a soft collar. The new method improved the capability for heavier payload significantly. In 1981, 15 balloons, ranging from 5,000 m3 to 50,000 m3 in volume with a total lift from 150 kg to 650 kg, were launched by this new method successfully.  相似文献   

14.
Sea-anchored balloons are stratospheric super-pressure balloons that are anchored to the sea. The sea-anchored balloon is a simple system that has the capability for long-duration flights, fixed-point observations, flexible launch windows, easy telemetry links to ground stations, and quick recoveries. Such balloons are not required to fly through the jet stream while tethered to the ground or sea, because the tether is deployed from a reel on the balloon after reaching a floating altitude. In this study, the feasibility of the sea-anchored balloon is investigated, with particular emphasis on the tether strength, balloon altitude, and system mass, based on the present technological level of the tether’s specific strength. Although the wind distribution with altitude is a dominant factor for feasibility, a sea-anchored balloon with an altitude of about 25 km would be feasible if the velocity of the jet stream is sufficiently low. The sea-anchored balloon can be simply flight-tested, since additional ground facilities and special flight operations are not necessary.  相似文献   

15.
Established in 1971, the National Balloon Facility operated by TIFR in Hyderabad, India, is a unique facility in the country, which provides a complete solution in scientific ballooning. It is also one of its kind in the world since it combines both, the in-house balloon production and a complete flight support for scientific ballooning. With a large team working through out the year to design, fabricate and launch scientific balloons, the Hyderabad Facility is a unique centre of expertise where the balloon design, research and development, the production and launch facilities are located under one roof. Our balloons are manufactured from 100% indigenous components. The mission specific balloon design, high reliability control and support instrumentation, in-house competence in tracking, telemetry, telecommand, data processing, system design and mechanics is its hallmark. In the past few years, we have executed a major programme of upgradation of different components of balloon production, telemetry and telecommand hardware and various support facilities. This paper focuses on our increased capability of balloon production of large sizes up to 780,000 m3 using Antrix film, development of high strength balloon load tapes with the breaking strength of 182 kg, and the recent introduction of S-band telemetry and a commandable timer cut-off unit in the flight hardware. A summary of the various flights conducted in recent years will be presented along with the plans for new facilities.  相似文献   

16.
Improvements of materials can extend the performance of scientific balloon flights in altitude, suspended load and duration. The impact of new materials is considered in the design of superpressure balloons for long duration improvement, ultra light weight for sounding balloons, and a launch technique for minimizing relative wind problems.  相似文献   

17.
Pumpkin shaped pressurized balloons (214m3) were launched from Pretoria during September 1978, to perform long duration flights at 95 mb level.On board instrumentation provided information on the general state of the balloon.A thermal model was carefully worked out so that the gas temperature could be related to thermal environment conditions, in which IR earth radiation is found.A balloon trajectory was established permitting the cross-checking of the information thus obtained with that provided by the METEOSAT satellite.The similar results observed enable the researcher to improve his knowledge of this balloon type's behaviour and, to a certain extent, the behaviour of the vehicle itself enables him to gather information on thermal environment conditions, especially IR earth radiation, at flight level.  相似文献   

18.
In order to understand the state of stress in scientific balloons, a need exists for the measurement of film deformation in flight. The results of a flight test program are reported where material strain was measured for the first time during the inflation, launch, ascent and float of a typical natural shape, zero pressure scientific balloon.  相似文献   

19.
The use of large plastic balloons as a research tool has increased dramatically since the developmental work of the early 1950's. The continuing demand by the scientific community for higher float altitudes, heavier payloads, and longer flight durations has severely challenged current design and analysis procedures. Previous simplifying assumptions concerning the balloon shape and stress must be reassessed in order to develop better analytical design and stress analysis procedures. A brief history of balloon stress analysis procedures and accompanying assumptions are presented. The limitations of old methods and recent improvements by Smalley, Alexander, Rand, and others are examined and compared. Finite difference and finite element techniques offer promise for more accuracy with fewer over-simplifying assumptions. Available methods are examined for potential use in various stress analysis requirements.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号