首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Airglow volume emission rates of the O(1D) red line at 630.0 nm and the O(1S) green line at 557.7 nm were measured by the Wind Imaging Interferometer (WINDII) on the Upper Atmospheric Research Satellite (UARS) during 1991–1997. Focus of this study is on the peak volume emission rates of the two airglows after removing the direct solar effect, which are referred to as the ‘dark’ peak emission rates. The main results are as follows. For the red line emission, at low and mid-latitudes the daytime variation does not have a clear pattern except an enhancement at dusk; during nighttime there is an enhancement in the equatorial region at 20–03 h, which has a semiannual variation with maxima at equinoxes; at solstices the daytime O(1D) dark emission rate is stronger in winter than in summer. For both the green line E-and F-layers the distribution of the dark peak volume emission rate is symmetric about noon in all seasons, symmetric about the equator at equinoxes, and stronger in summer than in winter. The O(1S) E-layer is profoundly affected by tides. For the first time the diurnal and semidiurnal amplitudes for the emission rates are derived using 24-h zero-sun data. The amplitude of the diurnal tide can be as large as 20% of the mean peak volume emission rate, and has maxima at the equator and about 40°N/S, and minima at about 20°N/S. The daily diurnal maximum is at noon at the equator but at midnight at 40°N/S. There is a clear semiannual variation of the diurnal amplitude in the equatorial region with maxima at equinoxes. The amplitude of the semidiurnal tide is mostly less than 10% of the mean peak volume emission rate with maximum amplitudes at noon and midnight. There is an annual variation of the semidiurnal amplitude at mid-latitudes peaking in summer. Aurorae appear in all three emission layers day and night. The green aurorae are brighter than the red aurorae, and the green E-layer aurorae are 2–3 times stronger than the F-layer aurorae. The green aurora has a clear midday gap in the F-layer and an afternoon gap in the E-layer. The red aurorae are particularly strong in the so-called cusp region at equinoxes.  相似文献   

2.
We present the results of nightglow observation of the atomic oxygen 557.7 nm line emission in the solar cycle 23. We use the experimental data obtained at Geophysical observatory near Irkutsk (52°N, 103°E), Russia, for the 1997–2006 period. The 557.7 nm emission observations data are compared with atmospheric and solar parameters. We note a difference in correlation coefficients between the 557.7 nm emission intensity and the solar activity indices in different phases of the solar cycle. Airglow observation results are compared with the observational data obtained by other authors.  相似文献   

3.
The ionospheric variability at equatorial and low latitude region is known to be extreme as compared to mid latitude region. In this study the ionospheric total electron content (TEC), is derived by analyzing dual frequency Global Positioning System (GPS) data recorded at two stations separated by 325 km near the Indian equatorial anomaly region, Varanasi (Geog latitude 25°, 16/ N, longitude 82°, 59/ E, Geomagnetic latitude 16°, 08/ N) and Kanpur (Geog latitude 26°, 18/ N, longitude 80°, 12/ E, Geomagnetic latitude 17°, 18/ N). Specifically, we studied monthly, seasonal and annual variations as well as solar and geomagnetic effects on the equatorial ionospheric anomaly (EIA) during the descending phase of solar activity from 2005 to 2009. It is found that the maximum TEC (EIA) near equatorial anomaly crest yield their maximum values during the equinox months and their minimum values during the summer. Using monthly averaged peak magnitude of TEC, a clear semi-annual variation is seen with two maxima occurring in both spring and autumn. Results also showed the presence of winter anomaly or seasonal anomaly in the EIA crest throughout the period 2005–2009 only except during the deep solar minimum year 2007–2008. The correlation analysis indicate that the variation of EIA crest is more affected by solar activity compared to geomagnetic activity with maximum dependence on the solar EUV flux, which is attributed to direct link of EUV flux on the formation of ionosphere and main agent of the ionization. The statistical mean occurrence of EIA crest in TEC during the year from 2005 to 2009 is found to around 12:54 LT hour and at 21.12° N geographic latitude. The crest of EIA shifts towards lower latitudes and the rate of shift of the crest latitude during this period is found to be 0.87° N/per year. The comparison between IRI models with observation during this period has been made and comparison is poor with increasing solar activity with maximum difference during the year 2005.  相似文献   

4.
This paper reports the nightglow observations of OI 630.0 nm emissions, made by using all sky imager operating at low latitude station Kolhapur (16.8°N, 74.2°E and dip lat. 10.6°N) during high sunspot number years of 24th solar cycle. The images are analyzed to study the nocturnal, seasonal and solar activity dependence occurrence of plasma bubbles. We observed EPBs in images regularly during a limited period 19:30 to 02:30 LT and reach maximum probability of occurrence at 22:30 LT. The observation pattern of EPBs shows nearly no occurrence during the month of May and it maximizes during the period October–April. The equinox and solstice seasonal variations in the occurrence of plasma bubbles show nearly equal and large differences, respectively, between years of 2010–11 and 2011–12.  相似文献   

5.
A new and original stereo imaging method is introduced to measure the altitude of the OH nightglow layer and provide a 3D perspective map of the altitude of the layer centroid. Near-IR photographs of the OH layer are taken at two sites separated by a 645 km distance. Each photograph is processed in order to provide a satellite view of the layer. When superposed, the two views present a common diamond-shaped area. Pairs of matched points that correspond to a physical emissive point in the common area are identified in calculating a normalized cross-correlation coefficient (NCC). This method is suitable for obtaining 3D representations in the case of low-contrast objects. An observational campaign was conducted in July 2006 in Peru. The images were taken simultaneously at Cerro Cosmos (12°09′08.2″ S, 75°33′49.3″ W, altitude 4630 m) close to Huancayo and Cerro Verde Tellolo (16°33′17.6″ S, 71°39′59.4″ W, altitude 2272 m) close to Arequipa. 3D maps of the layer surface were retrieved and compared with pseudo-relief intensity maps of the same region. The mean altitude of the emission barycenter is located at 86.3 km on July 26. Comparable relief wavy features appear in the 3D and intensity maps. It is shown that the vertical amplitude of the wave system varies as exp (Δz/2H) within the altitude range Δz = 83.5–88.0 km, H being the scale height. The oscillatory kinetic energy at the altitude of the OH layer is comprised between 3 × 10−4 and 5.4 × 10−4 J/m3, which is 2–3 times smaller than the values derived from partial radio wave at 52°N latitude.  相似文献   

6.
The paper reports the nightglow observations of hydroxyl (8–3), (7–2) and (6–2) Meinel band carried out at a low latitude station Kolhapur (16.8°N, 74.2°E, dip latitude 10.6°N), India during November 2002 to May 2005 with the objective of investigating mesopause dynamics based on derived OH rotational temperature. Overall, 132 nights of quality data were collected using filter-tilting photometer and an all-sky scanning photometer. The mean mesopause temperature observed at Kolhapur is 195 ± 11, 196 ± 9 and 195 ± 7 K from OH (8–3), (7–2) and (6–2) band emissions, respectively, using transition probabilities given by Langhoff et al. [Langhoff, S.R., Werner, H.J., Rosmus, P. Theoretical transition probabilities for the OH Meinel system. Journal of Molecular Spectroscopy 118, 507–529, 1986]. Small wave-like variations (periodicities ∼ few hours) existing over long period variations in derived temperatures are also present. A steady decrease of emission intensities from evening to dawn hours has been observed in approximately 59% of nights. No significant change of nightly mean temperatures has been noted. Furthermore, about 62% of observed nightly mean temperatures lie within one error bar of MSISE-90 model predictions.  相似文献   

7.
Severe geomagnetic storms and their effects on the 557.7 nm dayglow emission are studied in mesosphere. This study is primarily based on photochemical model with the necessary input obtained from a combination of experimental observations and empirical models. The model results are presented for a low latitude station Tirunelveli (8.7°N, 77.8°E). The volume emission rates are calculated using MSISE-90 and NRLMSISE-00 neutral atmospheric models. A comparison is made between the results obtained from these two models. A positive correlation amongst volume emission rate (VER), O, O2 number densities and Dst index has been found. The present results indicate that the variation in emission rate is more for MSISE-90 than in NRLMSISE-00 model. The maximum depletion in the VER of greenline dayglow emission is found to be about 30% at 96 km during the main phase of the one of the geomagnetic storms investigated in the case of MSISE-90 (which is strongest with Dst index −216 nT). The O2 density decreases about 22% at 96 km during the main phase of the same geomagnetic storm.The NRLSMSISE-00 model does not show any appreciable change in the number density of O during any of the two events. The present study also shows that the altitude of peak emission rate is unaffected by the geomagnetic storms. The effect of geomagnetic storm on the greenline nightglow emission has also been studied. It is found that almost no correlation can be established between the Dst index and variations in the volume emission rates using the NRLMSISE-00 neutral model atmosphere. However, a positive correlation is found in the case of MSISE-90 and the maximum depletion in the case of nightglow is about 40% for one of the storms. The present study shows that there are significant differences between the results obtained using MSISE-90 and NRLMSISE-00.  相似文献   

8.
A new set of data obtained at low solar activity from Ilorin, Nigeria (geog. latitude 8.5°N, geog longitude, 4.6°E, dip 4.1°S) is used to validate the IRI 2001 model at low solar activity. The results show in general a good agreement between model and observed B0 at night but an over estimation during daytime. The overestimation is greatest during the morning period (0600LT–1000LT). The model prediction for B1 is fairly good at night and during the day. A dependence of B0 on solar zenith angle χ is observed during the daytime. A formulation of the form B0 = A[cos(χ)n] is therefore proposed. Values of the constants n and A were determined for the period of low solar activity for this station.  相似文献   

9.
It is shown in this paper for the first time that the intensity of the daytime thermospheric O(1D) 630.0 nm airglow as measured by the ground-based dayglow photometer over Trivandrum (8.5°N; 77°E; dip lat. 0.5°N), a geomagnetic dip equatorial station, exhibit a direct correlation with the electron density at 180 km. This altitude is about ∼40 km lower than the believed centroid of the O(1D) 630.0 nm dayglow emission i.e. 220 km. This observation is contrary to the understanding of the behavior of O(1D) 630.0 nm dayglow over equatorial/low latitudes. Over these latitudes, the variations of the measured intensity of O(1D) 630.0 nm dayglow are known to be associated with the changes in the electron density at altitudes around 220 km, the centroid of this emission. In this context, the present results indicating the lowering of the peak altitude of O(1D) 630.0 nm emission from ∼220 to ∼180 km over the dip equator is new. Recent results on solar XUV flux indicate that this could be an important parameter that controls the O(1D) 630.0 nm dayglow excitation rates through modulations in the neutral and ionic composition in lower thermosphere-ionosphere region. However, the lowering of the centroid of O(1D) 630.0 nm emission, as shown in this study, has been ascribed primarily to the fountain effect associated with the equatorial ionization anomaly.  相似文献   

10.
The variations of plasma density in topside ionosphere during 23rd/24th solar cycle minimum attract more attentions in recently years. In this analysis, we use the data of electron density (Ne) from DEMETER (Detection of Electromagnetic Emissions Transmitted from Earthquake Regions) satellite at the altitude of 660–710 km to investigate the solstitial and equinoctial asymmetry under geomagnetic coordinate system at LT (local time) 1030 and 2230 during 2005–2010, especially in solar minimum years of 2008–2009. The results reveal that ΔNe (December–June) is always positive over Southern Hemisphere and negative over northern part whatever at LT 1030 or 2230, only at 0–10°N the winter anomaly occurs with ΔNe (December–June) > 0, and its amplitude becomes smaller with the declining of solar flux from 2005 to 2009. The ΔNe between September and March is completely negative during 2005–2008, but in 2009, it turns to be positive at latitudes of 20°S–40°N at LT 1030 and 10°S–20°N at LT 2230. Furthermore, the solstitial and equinoctial asymmetry index (AI) are calculated and studied respectively, which all depends on local time, latitude and longitude. The notable differences occur at higher latitudes in solar minimum year of 2009 with those in 2005–2008. The equinoctial AI at LT 2230 is quite consistent with the variational trend of solar flux with the lowest absolute AI occurring in 2009, the extreme solar minimum, but the solstitial AI exhibits abnormal enhancement during 2008 and 2009 with bigger AI than those in 2005–2007. Compared with the neutral compositions at 500 km altitude, it illustrates that [O/N2] and [O] play some roles in daytime and nighttime asymmetry of Ne at topside ionosphere.  相似文献   

11.
We investigated the diurnal, seasonal and latitudinal variations of ion density Ni over the Indian low and equatorial topside ionosphere within 17.5°S to 17.5°N magnetic latitudes by combining the data from SROSS C2 and ROCSAT 1 for the 9 year period from 1995 to 2003 during solar cycle 23. The diurnal maximum density is found in the local noon or in the afternoon hours and the minimum occurs in the pre sunrise hours. The density is higher during the equinoxes as compared to that in the June and December solstice. The local time spread of the daytime maximum ion density increases with increase in solar activity. A north south asymmetry with higher ion density over northern hemisphere in the June solstice and over southern hemisphere in December solstice has been observed in moderate and high solar activity years. The crest to crest distance increases with increase in solar flux. Ion density bears a nonlinear relationship with F10.7 cm solar flux and EUV flux in general. The density increases linearly with solar flux up to ∼150 sfu (1 sfu = 10−22Wm−2Hz−1) and EUV flux up to ∼50 units (109 photons cm−2 s−1). But beyond this the density saturates. Inverse saturation and linear relationship have been observed in some season or latitude also. Inter-comparison of the three solar activity indices F10.7 cm flux, EUV flux and F10.7P (= (F10.7 + F10.7A)/2, where F10.7A is the 81 day running average value of F10.7) shows that the ion density correlates better with F10.7P and F10.7 cm fluxes. The annual average daytime total ion density from 1995 to 2003 follows a hysteresis loop as the solar cycle reverses. The ion density at 500 km over the Indian longitude sector as obtained by the international reference ionosphere is in general lower than the measured densities during moderate and high solar activity years. In low solar activity years the model densities are equal or higher than measured densities. The IRI EIA peaks are symmetric (±10°) in equinox while densities are higher at 10°N in June solstice and at 10°S in the December solstice. The model density follows F10.7 linearly up to about F10.7 > ∼150 sfu and then saturates.  相似文献   

12.
The polarization pattern of ULF pulsations (f ≈ 1–100 mHz) at Terra Nova Bay (Antarctica, CGM λ ∼ 80°) has been determined for the entire 2003, soon after the solar maximum. A comparison with the results of previous investigations, conducted at the same station close to the solar minimum (1994–96), allows to focus common elements and major differences among different frequency bands which persist through the entire solar cycle. Basically, between f ∼ 1.5 and 5 mHz, the day can be divided into four sectors with alternate polarizations. The local time and latitudinal dependence of the observed pattern can be tentatively interpreted in terms of a latitude of resonant field lines reaching λ ∼ 80° in the noon sector; on the other hand, resonance effects of lower latitude field lines can be clearly identified also far from the noon meridian when the station moves into the deep polar cap. Moreover, in the morning sector the resonance region would extend to lower latitudes than in the evening sector. The proposed profile of the resonant region can interpret also the results obtained at other cusp/auroral stations and appears consistent with that one inferred in the northern hemisphere at smaller latitudes. The resonance region progressively shifts toward lower latitude with increasing frequency; correspondingly, the four-sector pattern progressively disappears at TNB. Above f ∼ 20 mHz, the experimental observations might suggest an additional contribution from Sunward propagating waves, possibly via the magnetotail lobes.  相似文献   

13.
Response of the D-region of the ionosphere to the total solar eclipse of 22 July 2009 at low latitude, Varanasi (Geog. lat., 25.27° N; Geog. long., 82.98° E; Geomag. lat. = 14° 55’ N) was investigated using ELF/VLF radio signal. Tweeks, a naturally occurring VLF signal and radio signals from various VLF navigational transmitters are first time used simultaneously to study the effect of total solar eclipse (TSE). Tweeks occurrence is a nighttime phenomena but the obscuration of solar disc during TSE in early morning leads to tweek occurrence. The changes in D-region ionospheric VLF reflection heights (h) and electron density (ne: 22.6–24.6 cm−3) during eclipse have been estimated from tweek analysis. The reflection height increased from ∼89 km from the first occurrence of tweek to about ∼93 km at the totality and then decreased to ∼88 km at the end of the eclipse, suggesting significant increase in tweek reflection height of about 5.5 km during the eclipse. The reflection heights at the time of totality during TSE are found to be less by 2–3 km as compared to the usual nighttime tweek reflection heights. This is due to partial nighttime condition created by TSE. A significant increase of 3 dB in the strength of the amplitude of VLF signal of 22.2 kHz transmitted from JJI-Japan is observed around the time of the total solar eclipse (TSE) as compared to a normal day. The modeled electron density height profile of the lower ionosphere depicts linear variation in the electron density with respect to solar radiation as observed by tweek analysis also. These low latitude ionospheric perturbations on the eclipse day are discussed and compared with other normal days.  相似文献   

14.
We use hourly monthly median values of propagation factor M(3000)F2 data observed at Ouagadougou Ionospheric Observatory (geographic12.4°N, 1.5°W; 5.9o dip), Burkina Faso (West Africa) during the years Januar1987–December1988 (average F10.7 < 130 × 10−22 W/m2/Hz, representative of low solar flux conditions) and for January 1989–December1990 (average F10.7 ? 130 × 10−22 W/m2/Hz, representative of high solar epoch) for magnetically quiet conditions to describe local time, seasonal and solar cycle variations of equatorial ionospheric propagation factor M(3000)F2 in the African region. We show that that seasonal trend between solar maximum and solar minimum curves display simple patterns for all seasons and exhibits reasonable disparity with root mean square error (RMSE) of about 0.31, 0.29 and 0.26 for December solstice, June solstice and equinox, respectively. Variability Σ defined by the percentage ratio of the absolute standard deviation to the mean indicates significant dissimilarity for the two solar flux levels. Solar maximum day (10–14 LT) and night (22–02 LT) values show considerable variations than the solar minimum day and night values. We compare our observations with those of the IRI 2007 to validate the prediction capacity of the empirical model. We find that the IRI model tends to underestimate and overestimate the observed values of M(3000)F2, in particular, during June solstice season. There are large discrepancies, mainly during high solar flux equinox and December solstice between dawn and local midnight. On the other hand, IRI provides a slightly better predictions for M(3000)F2 between 0900 and 1500 LT during equinox low and high solar activity and equinox high sunspot number. Our data are of great importance in the area of short-wave telecommunication and ionospheric modeling.  相似文献   

15.
Solar dependence of electron and ion temperatures (Te and Ti) in the ionosphere is studied using RPA data onboard SROSS C2 at an altitude of ∼500 km and 77°E longitude during early morning hours (04:00–07:00 LT) for three solar activities: solar minimum, moderate and maximum during winter, summer and equinox months in 10°S–20°N geomagnetic latitude. In winter the morning overshoot phenomenon is observed around 06:00 LT (Te enhances to ∼4000 K) during low-solar activity and to Te ∼ 3800 K, during higher solar activity. In summer, it is observed around 05:30 LT, but the rate of Te enhancement is higher during moderate solar activity (∼2700 K/hr) than the low-solar activity (∼1700 K/hr). During equinox, this phenomenon is delayed and is observed around 06:00 LT (∼4200 K) during all three activities.  相似文献   

16.
Ionogram observations from the ionosonde at Fuke (9.5°N geomagnetic latitude), a Chinese low latitude station, in 2010–2012 are analyzed to present the features of F3 layer under low and moderate solar activity conditions. Structure of the ionogram, displaying the F3 layer, was more distinct and clear during MSA than LSA periods especially during spring to summer. Start time of occurrence of the F3 layer is about at 0830–0900 LT and is approximately the same for LSA and MSA conditions. The average duration time of the F3 layer occurrence was 181 min per day under F10.7 = 75 condition, 263 min in F10.7 = 99 and 358 min in F10.7 = 125, respectively. The differences of h′F2 and h′F3 exhibited obvious semiannual variation observed at Fuke from March 2010 to June 2012 and increased with increasing solar activity. The difference of foF2 and foF3 in the months February, March, September, October and November is less evident in the middle solar activity period 2011–2012 than the low solar activity 2010 and in the other period it shows a slight increase (0.5 MHz) or keeps constant. The results show that the solar activity dependence of the F3 layer occurrence at low latitude away from the magnetic equator is different from that at near the magnetic equator.  相似文献   

17.
A new summer temperature proxy was built for northern Fennoscandia in AD 1000–2004 using parameters of tree growth from a large region, extending from the Swedish Scandes to the Kola Peninsula. It was found that century-scale (55–140 year) cyclicity is present in this series during the entire time interval. This periodicity is highly significant and has a bi-modal structure, i.e. it consists of two oscillation modes, 55–100 year and 100–140 year variations. A comparison of the century-long variation in the northern Fennoscandian temperature proxy with the corresponding variations in Wolf numbers and concentration of cosmogenic 10Be in glacial ice shows that a probable cause of this periodicity is the modulation of regional climate by the secular solar cycle of Gleissberg. This is in line with the results obtained previously for a more limited part of the region (Finnish Lapland: 68–70° N, 20–30° E). Thus the reality of a link between long-term changes in solar activity and climate in Fennoscandia has been confirmed. Possible mechanisms of solar influence on the lower troposphere are discussed.  相似文献   

18.
The paper presents observation of relativistic electrons. Data are collected by the Radiation Risk Radiometer-Dosimeters (R3D) B2/B3 modifications during the flights of Foton M2/M3 satellites in 2005 and 2007 as well as by the R3DE instrument at the European Technology Exposure Facility (EuTEF) on the Columbus External Payload Adaptor at the International Space Station (ISS) in the period February 20 – April 28, 2008. On the Foton M2/M3 satellites relativistic electrons are observed more frequently than on the ISS because of higher (62.8°) inclination of the orbit. At both Foton satellites the usual duration of the observations are a few minutes long. On the ISS the duration usually is about 1 min or less. The places of observations of high doses due to relativistic electrons are distributed mainly at latitudes above 50° geographic latitude in both hemispheres on Foton M2/M3 satellites. A very high maximum is found in the southern hemisphere at longitudinal range 0°–60°E. At the ISS the maximums are observed between 45° and 52° geographic latitude in both hemispheres mainly at longitudes equatorward from the magnetic poles. The measured absolute maximums of dose rates generated by relativistic electrons are found to be as follows: 304 μGy h−1 behind 1.75 g cm−2 shielding at Foton M2, 2314 μGy h−1 behind 0.71 g cm−2 shielding at Foton M3 and 19,195 μGy h−1 (Flux is 8363 cm−2 s−1) behind les than 0.4 g cm−2 shielding at ISS.  相似文献   

19.
Temperature observations at 20–90 km height and 5°N–15°N during the period of December 1992–March 1993 from the WINDII and MLS experiments on the UARS satellite are analysed together with MF radar winds and UKMO assimilated fields of temperature and zonal and meridional winds. The correlation between the different datasets at the tropics and zonal mean wind data at mid latitudes is examined for period February–March 1993, when series of stratospheric warming events were observed at middle and high latitudes. Wavelet analysis is applied to investigate coupling between stationary and travelling planetary waves in the stratosphere and the upper mesosphere. Planetary waves m = 1 with periods of 4–7 days, 8–12 days and 13–18 days are found to dominate the period. Westward 7- and 16–18 day waves at the tropics appear enhanced by stationary planetary waves during sudden stratospheric warming events.  相似文献   

20.
First comparison of in situ density fluctuations measured by the DEMETER satellite with ground based GPS receiver measurements at the equatorial anomaly station Bhopal (geographic coordinates (23.2°N, 77.6°E); geomagnetic coordinates (14.29°N, 151.12°E)) for the low solar activity year 2005, are presented in this paper. Calculation of the diurnal maximum of the strength of the equatorial electrojet, which can serve as precursor to ionospheric scintillations in the anomaly region is also done. The Langmuir Probe experiment and Plasma Analyzer onboard DEMETER measure the electron and ion densities respectively. Irregularities in electron density distribution cause scintillations on transionospheric links and there exists a close relationship between an irregularity and scintillation. In 40% of the cases, DEMETER detects the irregularity structures (dNe/Ne ? 5% and dNi/Ni (O+) ? 5%) and GPS L band scintillations (S4 ? 0.2) are also observed around the same time, for the low solar activity period. It is found that maximum irregularity intensity is obtained in the geomagnetic latitude range of 10–20° for both electron density and ion density. As the GPS signals pass through this irregularity structure, scintillations are recorded by the GPS receiver installed at the equatorial anomaly station, Bhopal it is interesting to note that in situ density fluctuations observed on magnetic flux tubes that pass over Bhopal can be used as indicator of ionospheric scintillations at that site. Many cases of density fluctuations and associated scintillations have been observed during the descending low solar activity period. The percentage occurrence of density irregularities and scintillations shows good correspondence with diurnal maximum of the strength of electrojet, however this varies with different seasons with maximum correspondence in summer (up to 66%) followed by equinox (up to 50%) and winter (up to 46%). Also, there is a threshold value of EEJ strength to produce density irregularities ((dNe/Ne)max ? 5%) and for moderate to strong scintillations (S4 ? 0.3) to occur. For winter this value is found to be ∼40 nT whereas for equinox and summer it is around 50 nT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号