首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 447 毫秒
1.
While interplanetary dust constitutes a primary source of cosmic particulate matter in planetary magnetospheres, the debris produced by its impact with small satellites and ring material provides an important secondary source. Internal processes, such as volcanic activity, particularly in the smaller satellites, could result in a third source. In the case of the terrestrial magnetosphere there are also artificial (internal) sources: 1–10μ sized A?2O3 particles injected by solid rocket mortar burns between near earth and geosynchronous orbit constitute one such source, while the fragments of larger bodies (artificial satellites) due to explosions (e.g., “killer satellites”) and collisions constitute another. Finally, if we include the purely induced cometary magnetosphere among planetary magnetospheres, the injection of cometary dust into it due to entrainment by the outflowing gases constitutes another source.As a result of being immersed in a radiative and plasma environment these dust grains get electrically charged up to some potential (positive or negative). Particularly in those regions where the magnetospheric plasma is hot and dense and their own spatial density is low, the dust grains could get charged to numerically large negative potentials.While this charging may have physical consequences for the larger grains, such as electrostatic erosion (“chipping”) and disruption, it also can effect the dynamics of the smaller grains. Indeed, the small but finite capacitance of these grains, which leads to a phase lag in the gyrophase oscillation of the grain potential, could even lead to the permanent magneto-gravitational capture of interplanetary grains within planetary magnetospheres in certain situations. Here we will review the sources of dust in planetary magnetospheres and discuss their physics and their dynamics under the combined action of both planetary gravitational and magnetospheric electromagnetic forces.  相似文献   

2.
In the present work we assess the stable and transient antiparticle content of planetary magnetospheres, and subsequently we consider their capture and application to high delta-v space propulsion. We estimate the total antiparticle mass contained within the Earth’s magnetosphere to assess the expediency of such usage. Using Earth’s magnetic field region as an example, we have considered the various source mechanisms that are applicable to a planetary magnetosphere, the confinement duration versus transport processes, and the antiparticle loss mechanisms. We have estimated the content of the trapped population of antiparticles magnetically confined following production in the exosphere due to nuclear interactions between high energy cosmic rays (CR) and constituents of the residual planetary upper atmosphere.The galactic antiprotons that directly penetrate into the Earth’s magnetosphere are themselves secondary by its nature, i.e. produced in nuclear reactions of the cosmic rays passing through the interstellar matter. These antiproton fluxes are modified, dependent on energy, when penetrating into the heliosphere and subsequently into planetary magnetospheres. During its lifetime in the Galaxy, CR pass through the small grammage of the interstellar matter where they produce secondary antiprotons. In contrast to this, antiprotons generated by the same CR in magnetosphere are locally produced at a path length of several tens g/cm2 of matter in the ambient planetary upper atmosphere. Due to the latter process, the resulting magnetically confined fluxes significantly exceed the fluxes of the galactic antiprotons in the Earth’s vicinity by up to two orders of magnitude at some energies.The radiation belt antiparticles can possibly be extracted with an electromagnetic-based “scoop” device. The antiparticles could be concentrated by and then stored within the superimposed magnetic field structure of such a device. In future developments, it is anticipated that the energy of the captured antiparticles (both rest energy and kinetic energy) can be adapted for use as a fuel for propelling spacecraft to high velocities for remote solar system missions.  相似文献   

3.
Mercury has a small but intriguing magnetosphere. In this brief review, we discuss some similarities and differences between Mercury’s and Earth’s magnetospheres. In particular, we discuss how electric and magnetic field measurements can be used as a diagnostic tool to improve our understanding of the dynamics of Mercury’s magnetosphere. These points are of interest to the upcoming ESA-JAXA BepiColombo mission to Mercury.  相似文献   

4.
The existence of a multiplicity of models of the Earth's magnetosphere raises the question: when are two of them equivalent in representing the real magnetosphere? The isomorphism of any two models of the Earth's magnetosphere is defined in terms of magnetic field characteristics. To assess to what degree empirical models are isomorphic with physical ones, two magnetospheres are compared: the magnetosphere of Mead and Fairfield [1975] and the physical magnetosphere proposed by Buneman, [1993]. Parameters realizing the isomorphism are found for the Buneman magnetosphere and the distribution in space of magnetic field characteristics are presented for both models.  相似文献   

5.
Understanding the physics of the various disturbances in the solar wind is critical to successful forecasts of space weather. The STEREO mission promises to bring us new and deeper understanding of these disturbances. As we stand on the threshold of the first results from this mission, it is appropriate to review what we know about solar wind disturbances. Because of their complementary nature we discuss both the disturbances that arise within the solar wind due to the stream structure and coronal mass ejecta and the disturbances that arise when the solar wind collides with planetary obstacles, such as magnetospheres.  相似文献   

6.
The Mariner 10 observations of Mercury's miniature magnetosphere collected during its close encounters in 1974 and 1975 are reviewed. Subsequent data analysis, re-interpretation and theoretical modeling, often influenced by new results obtained regarding the Earth's magnetosphere, have greatly expanded our impressions of the structure and dynamics of this small magnetosphere. Of special interest are the Earth-based telescopic images of this planet's tenuous atmosphere that show great variability on time scales of tens of hours to days. Our understanding of the implied close linkage between the sputtering of neutrals into the atmosphere due to solar wind and magnetospheric ions impacting the regolith and the resultant mass loading of the magnetosphere by heavy planetary ions is quite limited due to the dearth of experimental data. However, the influence of heavy ions of planetary origin (O+, Na+, K+, Ca+ and others as yet undetected) on such basic magnetospheric processes as wave propagation, convection, and reconnection remain to be discovered by future missions. The electrodynamic aspects of the coupling between the solar wind, magnetosphere and planet are also very poorly known due to the limited nature of the measurements returned by Mariner 10 and our lack of experience with a magnetosphere that is rooted in a regolith as opposed to an ionosphere. The review concludes with a brief summary of major unsolved questions concerning this very small, yet potentially complex magnetosphere.  相似文献   

7.
Spacecraft measurements of the plasma populations and magnetic fields near Jupiter and Saturn have revealed that large magnetospheres surround both planets. Magnetic field measurements have indicated closed field line topologies in the dayside magnetospheres of both planets while plasma instruments have shown these regions to be populated by both hot and cold plasma components convected azimuthally in the sense of planetary rotation. By using published data from the Voyager Plasma Science (PLS), Low Energy Charged Particle (LECP), and Magnetometer (MAG) instruments, it is possible to investigate the validity of the time stationary MHD momentum equation in the middle magnetospheres of Jupiter and Saturn. At Saturn, the hot plasma population is negligible in the dynamic sense and the centrifugal force of the cold rotating plasma appears to balance the Lorentz force. At Jupiter, the centrifugal force balances ~25% of the Lorentz force. The remaining inward Lorentz force is balanced by pressure gradients in the hot, high-β plasma of the Jovian magnetodisk.  相似文献   

8.
The huge potential drop between the footpoints of the closed field lines in the twisted magnetospheres of magnetars may accelerate electrons up to very high energies, γ ? 106. On the other hand, the comparison between the observed spectra of magnetars and spectra obtained by accurate theoretical models seems to favor of a picture in which the magnetosphere is filled by “slow” electrons (v ? 0.8c), rather than by ultra-relativistic particles.  相似文献   

9.
Some aspects of fluid instabilities occurring in the magnetospheres of accreting neutron stars are discussed. It is pointed out that (i) in the absence of strong differential rotation, the accreting plasma should be drawn out into spiralling, sheet-like structures, resulting in efficient mixing between the two media; (ii) the Rayleigh-Taylor instability also acts to limit the X-ray luminosity in super-critical sources; and (iii) magnetic shear has a strong stabilizing influence on Kelvin-Helmholtz modes, and its presence may allow substantial amounts of material to be supported around the magnetosphere.  相似文献   

10.
We have developed a real-time global MHD (magnetohydrodynamics) simulation of the solar wind interaction with the earth’s magnetosphere. By adopting the real-time solar wind parameters and interplanetary magnetic field (IMF) observed routinely by the ACE (Advanced Composition Explorer) spacecraft, responses of the magnetosphere are calculated with MHD code. The simulation is carried out routinely on the super computer system at National Institute of Information and Communications Technology (NICT), Japan. The visualized images of the magnetic field lines around the earth, pressure distribution on the meridian plane, and the conductivity of the polar ionosphere, can be referred to on the web site (http://www2.nict.go.jp/y/y223/simulation/realtime/).The results show that various magnetospheric activities are almost reproduced qualitatively. They also give us information how geomagnetic disturbances develop in the magnetosphere in relation with the ionosphere. From the viewpoint of space weather, the real-time simulation helps us to understand the whole image in the current condition of the magnetosphere. To evaluate the simulation results, we compare the AE indices derived from the simulation and observations. The simulation and observation agree well for quiet days and isolated substorm cases in general.  相似文献   

11.
This study extends the investigation of the ripples in the solar wind and the interplanetary magnetic field at L1 reported by Birch and Hargreaves (2020) to cover heliospheric distances from 1 to 40 AU, using data from the Voyager 2, Ulysses, Juno, Cassini, Themis and Apollo-12 spacecraft. The ripples were extracted from the source data using a bandpass filter which reduces the noise component of the source data while removing long-term trends. The ripples were found to propagate throughout the heliosphere with an average periodicity of 26 min, without significant attenuation relative to the background. They also permeated within the magnetospheres of Earth, Jupiter and Saturn with an average periodicity of 25 min, though with some attenuation relative to the solar wind, especially in the case of Jupiter. Within the planetary magnetospheres, the ripples were suppressed by the intense fields in close proximity to each planet, and though the distance varied at which this cutoff occurred, the flux density was very similar in all three cases.  相似文献   

12.
In the past two years, many progresses were made in Magnetospheric Physics by using the data of SuperMAG, Double Star Program, Cluster, THEMIS, RBSP, DMSP, DEMETER, NOAA, Van Allen probe, Swarm, MMS, ARTEMIS, MESSENGER, Fengyun, BeiDa etc., or by computer simulations. This paper briefly reviews these works based on papers selected from the 248 publications from January 2018 to December 2019. The subjects covered various sub-branches of Magnetospheric Physics, including geomagnetic storm, magnetospheric substorm, magnetic reconnection, solar wind-magnetosphere-ionosphere interaction, radiation belt, ring current, whistler waves, plasmasphere, outer magnetosphere, magnetotail, planetary magnetosphere, and technique.   相似文献   

13.
The magnetic energy of idealized magnetospheric configurations has been investigated on the basis of the three-parameter family of 2D magnetospheres constructed in the author's earlier papers. The tilt angle λ can assume any value and the tail is characterized by the flux content Φ and the dimensionless parameter p. For fixed λ and Φ the value of p can be determined using the least energy criterion. The energetics of a configuration depends on the flux content in the tail. The results obtained in the 2D case can be translated to 3D. This enables to expect that the Uranian magnetosphere in the pole-on position will be axially symmetric when the flux in the tail is large. When the flux is small, then the neutral sheet will be a slightly bent surface.  相似文献   

14.
考虑太阳风动压与行星电离层中的带电粒子热压及磁压之和平衡,建立了有大气(电离层)的行星磁层顶形成的理论模型,结合卫星对火星的观测数据,对子午面内向日侧火星磁层顶位形进行了数值计算和分析,研究了火星磁层顶位形及其与太阳风动压之间的变化关系.结果认为,火星磁层顶位形与地球磁层顶相似.太阳风动压越大,火星磁层顶越靠近火星;太阳风动压越弱,火星磁层顶越远离火星.根据火星内秉磁矩从古到今逐渐减小的观点,探索了大尺度磁场(内禀磁矩)对火星磁层顶的贡献作用,结果认为大尺度磁场越强,火星磁层顶越远离行星.这对于进一步研究火星磁层的长期演化以及其他行星磁层的位形变化都具有重要的意义.  相似文献   

15.
Foreshock and magnetosheath waves in Uranus and Neptune magnetospheres are studied in this work with wavelet analysis. In order to conduct this study, Voyager-2 magnetometer 3-s averaged data are used. The Morlet wavelet transform is applied to the magnetic field vector data. Waves present in the magnetosheath and foreshock regions are highly non-stationary, showing large amplitude variations. It was found that the dominant periods of these waves are longer than the H+ cyclotron period. Overall, high frequency waves are seen near the bow shock crossing and low frequency oscillations near the magnetopause crossing. It can be concluded that non-stationary foreshock and magnetosheath planetary waves can be well characterized with wavelet analysis.  相似文献   

16.
The environment surrounding a planet is composed of plasma, ionized gases and a neutral atmosphere that are continuously under the influence of solar effects. The complex dynamical interactions among these media and the generated electric fields create complicated interrelated current systems in the magnetosphere, ionosphere and atmosphere of the planets. Electric fields, currents and the related magnetic disturbances constitute the planetary electrodynamics scenario that will be considered in this tutorial. Beside providing a comprehensive and integrated view of the planetary electrodynamics, this tutorial intends to introduce the necessary theoretical background to understand the physical processes involved and particularly, to discuss some topics in which the authors are currently focussing their interests: Sun–Earth electrodynamical coupling, numerical simulations, plasmaspheric electron content variability, atmospheric electrical discharges, and the effects of intense magnetic storms at the Earth’s surface and in the magnetic anomaly region. New results on these subjects are also presented. A deeper and broader comprehension of this complex scenario involving multidisciplinary investigations will certainly bring several implications in the observational, theoretical, computational and technological developments, with repercussions in biological and medical sciences.  相似文献   

17.
Extensive studies have been conducted concerning individual mass, temporal and positional distribution of submicron rocky ejecta existing in the satellite-planetary gravitational sphere of influence. The transit time of the major portion of the ejecta that is transported from the satellite's gravitational sphere of influence to the planetary magnetopause is about one week and represents a mass loading pulse occurring each satellite orbit. The mass-flux distributions of lunar ejecta at the surface of the magnetopause for a complete lunar orbit are presented. Spatial mass densities of lunar ejecta in specific zones of the magnetosphere provide a means to compare sporadic interplanetary dust spatial mass densities in the same zones.  相似文献   

18.
The interaction between the solar wind and Mercury is anticipated to be unique because of Mercury’s relatively weak intrinsic magnetic field and tenuous neutral exosphere. In this paper the role of the IMF in determining the structure of the Hermean magnetosphere is studied using a new self-consistent three-dimensional quasi-neutral hybrid model. A comparison between a pure northward and southward IMF shows that the general morphology of the magnetic field, the position and shape of the bow shock and the magnetopause as well as the density and velocity of the solar wind in the magnetosheath and in the magnetosphere are quite similar in these two IMF situations. A Parker spiral IMF case, instead, produces a magnetosphere with a substantial north–south asymmetric plasma and magnetic field configuration. In general, this study illustrates quantitatively the role of IMF when the solar wind interacts with a weakly magnetised planetary body.  相似文献   

19.
Long-lived upstream energetic ion events at Jupiter appear to be very similar in nearly all respects to upstream ion events at earth. A notable difference between the two planetary systems is the enhanced heavy ion compositional signature reported for the Jovian events. This compositional feature has suggested that ions escaping from the Jovian magnetosphere play an important role in forming upstream ion populations at Jupiter. In contrast, models of energetic upstream ions at earth emphasize in situ acceleration of reflected solar wind ions within the upstream region itself. Using Voyager 1 and 2 energetic (? 30 keV) ion measurements near the magnetopause, in the magnetosheath, and immediately upstream of the bow shock, we examine the compositional patterns together with typical energy spectra in each of these regions. We find characteristic spectral changes late in ion events observed upstream of the bow shock at the same time that heavy ion fluxes are enhanced and energetic electrons are present. A model involving upstream Fermi acceleration early in events and emphasizing energetic particle escape in the prenoon part of the Jovian magnetosphere late in events is presented to explain many of the features in the upstream region of Jupiter.  相似文献   

20.
The propagation of Jovian electrons in interplanetary space was modelled by solving the relevant transport equation numerically through the use of stochastic differential equations. This approach allows us to calculate, for the first time, the propagation time of Jovian electrons from the Jovian magnetosphere to Earth. Using observed quiet-time increases of electron intensities at Earth, we also derive values for this quantity. Comparing the modelled and observed propagation times we can gauge the magnitude of the transport parameters sufficiently to place a limit on the 6 MeV Jovian electron flux reaching Earth. We also investigate how the modelled propagation time, and corresponding Jovian electron flux, varies with the well-known ∼13 month periodicity in the magnetic connectivity of Earth and Jupiter. The results show that the Jovian electron intensity varies by a factor of ∼10 during this cycle of magnetic connectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号