首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
We study the 27-day variations of the solar wind velocity, galactic cosmic ray (GCR) intensity and anisotropy in the last minimum epoch of solar activity (2007–2009, A < 0). The average amplitude of the 27-day variation of the galactic cosmic ray anisotropy (A27A) in the current minimum epoch of solar activity (2007–2009, A < 0) is lesser than in previous positive polarity period as it is expected from the drift theory. So, polarity dependence rule for the 27-day variation of the GCR anisotropy is fully kept. It is a universal principle for the amplitudes of the 27-day variation of the GCR anisotropy. At the same time, the average amplitude of the 27-day variation of the GCR intensity (A27I) remains at the same level as for previous minimum epoch 1995–1997 (A > 0) showing by the same token an violation of its polarity dependence rule established earlier. We assume that this phenomenon could be generally related with the well established 27-day variation of the solar wind velocity being in anti-correlation with the similar changes of the 27-day variation of the GCR intensity. Generally, a character of the heliolongitudinal asymmetry of spatial large-scale structure of the solar wind velocity (SWV) established in the recent minimum epoch, preferentially pronounces in the behavior of the 27-day variation of the GCR intensity than anisotropy. The formation of the 27-day variation of the GCR anisotropy preferentially takes place in a restricted disk like local vicinity in the helioequatorial region, whilst the 27-day variation of the GCR intensity is formed in the global three dimensional vicinity of the heliosphere.  相似文献   

2.
We show that the higher range of the heliolongitudinal asymmetry of the solar wind speed in the positive polarity period (A > 0) than in the negative polarity period (A < 0) is one of the important reasons of the larger amplitudes of the 27-day variation of the galactic cosmic ray (GCR) intensity in the period of 1995–1997 (A > 0) than in 1985–1987 (A < 0). Subsequently, different ranges of the heliolongitudinal asymmetry of the solar wind speed jointly with equally important corresponding drift effect are general causes of the polarity dependence of the amplitudes of the 27-day variation of the GCR intensity. At the same time, we show that the polarity dependence is feeble for the last unusual minimum epoch of solar activity 2007–2009 (A < 0); the amplitude of the 27-day variation of the GCR intensity shows only a tendency of the polarity dependence. We present a three dimensional (3-D) model of the 27-day variation of GCR based on the Parker’s transport equation. In the 3-D model is implemented a longitudinal variation of the solar wind speed reproducing in situ measurements and corresponding divergence-free interplanetary magnetic field (IMF) derived from the Maxwell’s equations. We show that results of the proposed 3-D modeling of the 27-day variation of GCR intensity for different polarities of the solar magnetic cycle are in good agreement with the neutron monitors experimental data. To reach a compatibility of the theoretical modeling with observations for the last minimum epoch of solar activity 2007–2009 (A < 0) a parallel diffusion coefficient was increased by ∼40%.  相似文献   

3.
The average amplitude of the 27-day variation of the galactic cosmic ray anisotropy calculated based on the neutron monitors experimental data is larger in the qA > 0 period than in the qA < 0 period of solar magnetic cycle. The amplitudes of the 27-day variation of the galactic cosmic rays anisotropy do not depend on the tilt angles of the heliospheric neutral sheet for different the qA > 0 and the qA < 0 periods of solar magnetic cycle. A good correlation has been revealed between the changes of the amplitudes of the 27-day variations of the galactic cosmic ray anisotropy and intensity versus the qA > 0 and the qA < 0 periods of solar magnetic cycle.  相似文献   

4.
We study the temporal evolution of the power rigidity spectrum of the first (27 days) and the second (14 days) harmonics of the 27-day variation of the galactic cosmic ray intensity measured by neutron monitors in the period of 1965–2002. The rigidity spectrum of these variations can be approximated by a power law. We show the rigidity spectra of the first and the second harmonics of the 27-day variation of the galactic cosmic ray intensity have similar time profiles. These spectra are hard (γ ≈ 0.5 ± 0.1) and soft (γ ≈ 1.1 ± 0.2) during solar maximum and minimum activity, respectively. We ascribe this to the alternation of the sizes of the modulation regions responsible for the 27-day variation of the galactic cosmic ray intensity in different epochs of solar activity. Especially, the average radial sizes of the modulation regions of the 27-day variation and the heliolatitudinal extension of the heliolongitudinal asymmetry are smaller during solar minimum than during solar maximum. We show also, that the temporal changes of the power rigidity spectra of the first and the second harmonics of the 27-day variation of the galactic cosmic ray intensity are in a negative correlation with the changes of the rigidity spectrum of the corresponding 11-year variation.  相似文献   

5.
The observation of the directional distribution of energetic and cosmic ray particles has been done with the Voyager spacecraft over a long period. Since 2002, when the first flux enhancements of charged particles associated with the approach of Voyager 1 to the solar wind termination shock were observed, these anisotropy measurements have become of special interest. They play an important role to understand the magnetic field and shock structure and the basics of the modulation of cosmic ray and anomalous particles at and beyond the termination shock. They also serve as motivation to study the spatial behavior of galactic and anomalous cosmic ray anisotropies with numerical modulation models in order to illustrate how the radial anisotropy, at different energies, change from upstream to downstream of the termination shock. Observations made by Voyager 1 indicate that the termination shock is a complicated region than previously thought, hence the effects of the latitude dependence of the termination shock’s compression ratio and injection efficiency on the radial anisotropies of galactic and anomalous protons will be illustrated. We find that the magnitude and direction of the radial anisotropy strongly depends on the position in the heliosphere and the energy of particles. The effect of the TS on the radial anisotropy is to abruptly increase its value in the heliosheath especially in the A > 0 cycle for galactic protons and in both polarity cycles for anomalous protons. Furthermore, the global effect of the latitude dependence of the shock’s compression ratio is to increase the radial anisotropy for galactic protons throughout the heliosphere, while when combined with the latitude dependence of the injection efficiency this increase depends on modulation factors for anomalous protons and can even alter the direction of the radial anisotropy.  相似文献   

6.
7.
The annual mean sunspot number (SSN) has a minimum value in 2008, while the monthly mean SSN has a value of zero in August 2009. The galactic cosmic ray modulation for cycle 24 began at earth orbit in January 2010. We study the onset characteristics of the new modulation cycle using data from the global network of neutron monitors. They respond to time variations in different segments of the galactic cosmic ray rigidity spectrum. The corresponding temporal variations in the interplanetary magnetic field intensity (B) and solar wind velocity (V) as well as the tilt angle of the heliospheric current sheet are also studied. There is a lag of 3 months between a large, sharp increase of the tilt angle of the heliospheric current sheet and the onset of modulation. Some neutron monitors are undergoing long-term drifts of unknown origin.  相似文献   

8.
The impact of the solar activity on the heliosphere has a strong influence on the modulation of the flux of low energy galactic cosmic rays arriving at Earth. Different instruments, such as neutron monitors or muon detectors, have been recording the variability of the cosmic ray flux at ground level for several decades. Although the Pierre Auger Observatory was designed to observe cosmic rays at the highest energies, it also records the count rates of low energy secondary particles (the scaler mode) for the self-calibration of its surface detector array. From observations using the scaler mode at the Pierre Auger Observatory, modulation of galactic cosmic rays due to solar transient activity has been observed (e.g., Forbush decreases). Due to the high total count rate coming from the combined area of its detectors, the Pierre Auger Observatory (its detectors have a total area greater than 16,000 m2) detects a flux of secondary particles of the order of ∼108 counts per minute. Time variations of the cosmic ray flux related to the activity of the heliosphere can be determined with high accuracy. In this paper we briefly describe the scaler mode and analyze a Forbush decrease together with the interplanetary coronal mass ejection that originated it. The Auger scaler data are now publicly available.  相似文献   

9.
Observations made with the two Voyager spacecraft confirmed that the solar wind decelerates to form the heliospheric termination shock and that it has begun its merger with the local interstellar medium. The compression ratio of this shock affects galactic cosmic rays when they enter the heliosphere. Hydrodynamic (HD) models show that the compression ratio can have a significant latitude dependence; with the largest value in the nose direction of the heliosphere, becoming significantly less towards the polar regions. The modulation effects of such large latitude dependence are studied, using a well-established numerical drift and shock modulation model. We focus on computing the modulated spectra for galactic protons with emphasis on the radial and polar gradients in the equatorial plane and at a polar angle of θ = 55°, corresponding to the heliolatitude of Voyager 1. Two sets of solutions are computed and compared each time; with and without a latitude dependence for the compression ratio. All computations are done for the two magnetic field polarity cycles assuming solar minimum conditions. Including the termination shock in the model allows the study of the re-acceleration of galactic protons in the outer heliosphere. We find that for the A < 0 polarity cycle the intensity between ∼200 MeV and ∼1 GeV in the vicinity of the shock in the heliospheric equatorial plane may exceed the local interstellar value specified at the heliopause. Unfortunately, at θ = 55°, the effect is reduced. This seems not possible during an A > 0 cycle because significant modulation is then predicted between the heliopause and the termination shock, depending on how strong global gradient and curvature drifts are in the heliosheath. The overall effect of the shock on galactic protons in the equatorial plane is to reduce the total modulation as a function of radial distance with respect to the interstellar spectrum. Making the compression ratio latitude dependent enhances these effects at energies E < 200 MeV in the equatorial plane. At larger heliolatitudes these effects are even more significant. The differences in the modulation between the two drift cycles are compelling when the compression ratio is made latitude dependent but at Earth this effect is insignificant. A general result is that the computed radial gradient changes for galactic protons at and close to the TS and that these changes are polarity dependent. In line with previous work, large polarity dependent effects are predicted for the inner heliosphere and also close to the shock’s position in the equatorial plane. In contrast, at θ = 55°, the largest polarity effect occurs in the middle heliosphere (50 AU), enhanced by the latitude dependence of the compression ratio. At this latitude, the amount of proton modulation between the heliopause and the termination shock is much reduced. If galactic cosmic rays were to experience some diffusive shock acceleration over the 100–1000 MeV range at the shock, the radial gradient should change its sign in the vicinity of the shock, how large, depends on the compression ratio and the amount of drifts taking place in the outer heliosphere. The effective polar gradient shows a strong polarity dependence at Earth but this dissipates at θ = 55°, especially with increasing radial distance. This tendency is enhanced by making the compression ratio latitude dependent.  相似文献   

10.
Fluctuations of cosmic rays and interplanetary magnetic field upstream of interplanetary shocks are studied using data of ground-based polar neutron monitors as well as measurements of energetic particles and solar wind plasma parameters aboard the ACE spacecraft. It is shown that coherent cosmic ray fluctuations in the energy range from 10 keV to 1 GeV are often observed at the Earth’s orbit before the arrival of interplanetary shocks. This corresponds to an increase of solar wind turbulence level by more than the order of magnitude upstream of the shock. We suggest a scenario where the cosmic ray fluctuation spectrum is modulated by fast magnetosonic waves generated by flux of low-energy cosmic rays which are reflected and/or accelerated by an interplanetary shock.  相似文献   

11.
We study two intense Forbush decreases that occurred during two adjacent SOLTIP (Solar connection of Transient Interplanetary Processes) intervals; namely SOLTIP 1 (22–27 March 1991) and SOLTIP 2 (1–17 June 1991); galactic cosmic ray intensity at the depth of the second Forbush decrease was the lowest ever recorded since continuous monitoring by Climax neutron monitor began in 1951 (58% below the solar minimum value of 1954), indicating extreme conditions in the heliosphere that prevented galactic cosmic rays from reaching the Earth. These decreases were seen propagating in outer heliosphere by the deep space missions Voyagers 1, 2 and Pioneer 10, 11, with suitable time delays. We analyze hourly, pressure corrected, neutron monitor data from the global sites in both hemispheres, and muon telescopes located underground; they respond to 10–300 GV range of the galactic cosmic ray spectrum. This circumstance provides us an ideal opportunity to study the rigidity dependence of the amplitudes of the two Forbush decreases. In both cases the amplitude is found to be a power law in rigidity, with negative exponents.  相似文献   

12.
We have studied conditions in interplanetary space, which can have an influence on galactic cosmic ray (CR) and climate change. In this connection the solar wind and interplanetary magnetic field parameters and cosmic ray variations have been compared with geomagnetic activity represented by the equatorial Dst index from the beginning 1965 to the end of 2012. Dst index is commonly used as the solar wind–magnetosphere–ionosphere interaction characteristic. The important drivers in interplanetary medium which have effect on cosmic rays as CMEs (coronal mass ejections) and CIRs (corotating interaction regions) undergo very strong changes during their propagation to the Earth. Because of this CMEs, coronal holes and the solar spot numbers (SSN) do not adequately reflect peculiarities concerned with the solar wind arrival to 1 AU. Therefore, the geomagnetic indices have some inestimable advantage as continuous series other the irregular solar wind measurements. We have compared the yearly average variations of Dst index and the solar wind parameters with cosmic ray data from Moscow, Climax, and Haleakala neutron monitors during the solar cycles 20–23. The descending phases of these solar cycles (CSs) had the long-lasting solar wind high speed streams occurred frequently and were the primary contributors to the recurrent Dst variations. They also had effects on cosmic rays variations. We show that long-term Dst variations in these solar cycles were correlated with the cosmic ray count rate and can be used for study of CR variations. Global temperature variations in connection with evolution of Dst index and CR variations is discussed.  相似文献   

13.
Voyager 1 crossed the solar wind termination shock on December 16, 2004 at a distance of 94 AU from the Sun, to become the first spacecraft to explore the termination shock region and to enter the heliosheath, the final heliospheric frontier. By the end of 2006, Voyager 1 will be at ∼101 AU, with Voyager 2 at ∼81 AU and still approaching the termination shock. Both spacecraft have been observing the modulation of galactic and anomalous cosmic rays since their launch in 1977. The recent observations close to or inside the heliosheath have provided several interesting ‘surprises’ with subsequent theoretical and modeling challenges. Examples are: what does the modulation of galactic cosmic rays amount to in this region?; how do the anomalous cosmic rays get accelerated and modulated?; why are there ‘breaks’ in the power-law slopes of the spectra of accelerated particles? Several numerical models have been applied to most of these topics over the years and comprehensive global predictions have been made the past decade, thought to be based on reasonable assumptions about the termination shock and the heliosheath. Examples of these predictions and assumptions are concisely discussed within the context of the main observed features of cosmic rays in the vicinity of the termination shock, ending with a discussion of some of the issues and challenges to cosmic ray modeling in particular.  相似文献   

14.
We study the Forbush decrease of the galactic cosmic ray intensity observed in 9–25 September 2005 using the experimental data and a newly developed time-dependent three dimensional modeling. We analyze neutron monitors and muon telescopes, and the interplanetary magnetic field data. We demonstrate a clear relationship between the rigidity (R) spectrum exponent (γ) of the Forbush decrease and the exponent (ν) of the power spectral density of the components of the interplanetary magnetic field in the frequency range of ∼ 10−6–10 −5 Hz. We confirm that an inclusion of the time-dependent changes of the exponent ν makes the newly developed nonstationary three dimensional model of the Forbush decrease compatible with the experimental data. Also, we show that the changes of the rigidity spectrum exponent γ does not depend on the level of convection of the galactic cosmic rays stream by solar wind; depending on the changes of the exponent ν, i.e. on the state of the turbulence of the interplanetary magnetic field.  相似文献   

15.
16.
We show that the amplitudes of the 27-day variations of galactic cosmic ray (GCR) intensity, solar wind and solar activity parameters have a periodicity with duration of three to four Carrington rotation periods (3–4 CRP). We assume that the general reason for this phenomenon may be related to similar cyclicity of topological structure of the solar magnetic field lines created owing to the asymmetry of turbulent solar dynamo and solar differential rotation transforming the Sun’s poloidal magnetic field to the toroidal (αω effect), and vice versa.  相似文献   

17.
The hysteresis effect for small energies of galactic cosmic rays is due to two effects. The first is the same as for neutron monitor energies – the delay of the interplanetary processes responsible for cosmic ray modulation with respect to the initiating solar processes, according to the effective velocity of solar wind and shock waves propagation. Then, the observed cosmic ray intensity is connected to the solar activity variations during many months before the time of cosmic ray measurement. The second is caused by the time delay of small energy cosmic ray diffusion from the boundary of modulation region to the Earth’s orbit. The model describing the connection between solar activity variation and cosmic ray convection–diffusion global modulation for neutron monitor energies is here developed by taking into account also the time-lag of the small energy particle diffusion in the Heliosphere. We use theoretical results on drifts and analytically approximate the dependences of drifts from tilt angle, and take into account the dependence from the sign of primary particles, and from the sign of polar magnetic field (A > 0 or A < 0). The obtained results are applied on proton and alpha-particle satellite data. We analyze satellite 5-min data of proton fluxes with energies >1 MeV, >2 MeV, >5 MeV, >10 MeV, >30 MeV, >50 MeV, >60 MeV, >100 MeV, and in intervals 10–30 MeV, 30–60 MeV, and 60–100 MeV during January 1986–December 1999. We exclude periods with great cosmic ray increases caused by particle acceleration in solar flare events. Then, we determine monthly averaged fluxes, as well as 5-month and 11-month smoothed data. We analyze also satellite 5-min data on alpha-particle fluxes in the energy intervals 60-160 MeV, 160–260 MeV and 330–500 MeV during January 1986–May 2000. We correct observation data for drifts and then compare with what is expected according to the convection–diffusion mechanism. We assume different dimensions of the modulation region (by the time propagation X0 of solar wind from the Sun to the boundary of modulation region), for X0 values from 1 to 60 average months, by one-month steps. For each value of X0 we determine the correlation coefficient between variations of expected and observed cosmic ray intensities (the estimation of cosmic ray intensities values is given in Section 3 by Eq. (9), and the determination of correlation and regression coefficients in Section 3 by Eq. (8)). The dimension of modulation region is determined by the value of X0 max, for which the correlation coefficient reaches the maximum value. Then the effective radial diffusion coefficient and residual modulation in small energy region can be estimated.  相似文献   

18.
In this paper we analyze the spatial distribution of galactic cosmic rays during periods of maximum solar activity of the cycles 21, 22 and 23. We have used a two dimensional model to solve the cosmic ray transport equation. This model includes all relevant physical processes: diffusion, convection, drift and shock effects on cosmic ray propagation inside the heliosphere. We focused on the study of the radial distribution of galactic cosmic rays, and compare our results with the spacecraft observations for two energies (175 MeV H and 265 MeV/n He). Although the radial intensities of galactic cosmic rays can be explained qualitatively with all three local interstellar spectra (LISs) used in this work, we applied a reduced chi-squared analysis to investigate the best LIS that could fit the data.  相似文献   

19.
Measurements of 44Ti activity in meteorites show that the galactic cosmic ray (GCR) intensity has been declining in the interplanetary space during the past three centuries and has a component of cyclic variation, with periodicity of about 87 years [Taricco, C., Bhandari, N., Cane, D., et al. Galactic cosmic ray flux decline and periodicities in the interplanetary space during the last 3 centuries revealed by 44Ti in meteorites. J. Geophys. Res. 111, A08102, 2006.]. In order to verify these results, we have measured 44Ti activity in Allegan meteorite which fell in 1899 and in some other meteorites with better precision. The measurements confirm low cosmic ray flux and consequently high solar activity near the middle of 19th century.  相似文献   

20.
The galactic cosmic rays (GCR) are the main ionization source at altitude of ∼3–35 km in the atmosphere. For high latitude anomalous cosmic ray (ACR) component has also a significant influence on the atmospheric ionization. We propose an empirical model for differential spectra D(E) of galactic and anomalous cosmic rays in energy interval 1 MeV–100 GeV during solar cycle. In the model data are used which cover three solar cycles: 20, 22 and 23. The LEAP87, IMAX92, CAPRICE94, AMS98 and BESS experimental spectra for protons and alpha particles are fitted to the proposed empirical model. The modulated GCR differential spectra are compared with force-field approximation to the one-dimensional transport equation and with solutions of two-dimensional cosmic ray transport equation. For experimental spectra, the calculation of the model parameters is performed by Levenberg–Marquardt algorithm, applied to the special case of least squares. Algorithm that combines the rapid local convergence of Newton–Raphson method with globally convergent method for non-linear systems of equations is applied for theoretically obtained differential spectra. The described programmes are realized in algorithmic language C++. The proposed model gives practical possibility for investigation of experimental data from measurements of galactic cosmic rays and their anomalous component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号