首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Identifying spacecraft breakup events is an essential issue for better understanding of the current orbital debris environment. This paper proposes an observation planning approach to identify an orbital anomaly, which appears as a significant discontinuity in archived orbital history, as a spacecraft breakup. The proposed approach is applicable to orbital anomalies in the geostationary region. The proposed approach selects a spacecraft that experienced an orbital anomaly, and then predicts trajectories of possible fragments of the spacecraft at an observation epoch. This paper theoretically demonstrates that observation planning for the possible fragments can be conducted. To do this, long-term behaviors of the possible fragments are evaluated. It is concluded that intersections of their trajectories will converge into several corresponding regions in the celestial sphere even if the breakup epoch is not specified and it has uncertainty of the order of several weeks.  相似文献   

2.
One of the primary mission risks tracked in the development of all spacecraft is that due to micro-meteoroids and orbital debris (MMOD). Both types of particles, especially those larger than 0.1 mm in diameter, contain sufficient kinetic energy due to their combined mass and velocities to cause serious damage to crew members and spacecraft. The process used to assess MMOD risk consists of three elements: environment, damage prediction, and damage tolerance. Orbital debris risk assessments for the Orion vehicle, as well as the Shuttle, Space Station and other satellites use ballistic limit equations (BLEs) that have been developed using high speed impact test data and results from numerical simulations that have used spherical projectiles. However, spheres are not expected to be a common shape for orbital debris; rather, orbital debris fragments might be better represented by other regular or irregular solids. In this paper we examine the general construction of NASA’s current orbital debris (OD) model, explore the potential variations in orbital debris mass and shape that are possible when using particle characteristic length to define particle size (instead of assuming spherical particles), and, considering specifically the Orion vehicle, perform an orbital debris risk sensitivity study taking into account variations in particle mass and shape as noted above. While the results of the work performed for this study are preliminary, they do show that continuing to use aluminum spheres in spacecraft risk assessments could result in an over-design of its MMOD protection systems. In such a case, the spacecraft could be heavier than needed, could cost more than needed, and could cost more to put into orbit than needed. The results obtained in this study also show the need to incorporate effects of mass and shape in mission risk assessment prior to first flight of any spacecraft as well as the need to continue to develop/refine BLEs so that they more accurately reflect the shape and material density variations inherent to the actual debris environment.  相似文献   

3.
This paper summarizes two new satellite impact experiments. The objective of the experiments was to investigate the outcome of low- and hyper-velocity impacts on two identical target satellites. The first experiment was performed at a low-velocity of 1.5 km/s using a 40-g aluminum alloy sphere. The second experiment was performed at a hyper-velocity of 4.4 km/s using a 4-g aluminum alloy sphere. The target satellites were 15 cm × 15 cm × 15 cm in size and 800 g in mass. The ratios of impact energy to target mass for the two experiments were approximately the same. The target satellites were completely fragmented in both experiments, although there were some differences in the characteristics of the fragments. The projectile of the low-velocity impact experiment was partially fragmented while the projectile of the hyper-velocity impact experiment was completely fragmented beyond recognition. To date, approximately 1500 fragments from each impact experiment have been collected for detailed analysis. Each piece has been weighed, measured, and analyzed based on the analytic method used in the NASA Standard Breakup Model (2000 revision). These fragments account for about 95% of the target mass for both impact experiments. Preliminary analysis results will be presented in this paper.  相似文献   

4.
Today’s space debris environment shows major concentrations of objects within distinct orbital regions for nearly all size regimes. The most critical region is found at orbital altitudes near 800 km with high declinations. Within this region many satellites are operated in so called sun-synchronous orbits (SSO). Among those, there are Earth observation, communication and weather satellites. Due to the orbital geometry in SSO, head-on encounters with relative velocities of about 15 km/s are most probable and would thus result in highly energetic collisions, which are often referred to as catastrophic collisions, leading to the complete fragmentation of the participating objects. So called feedback collisions can then be triggered by the newly generated fragments, thus leading to a further population increase in the affected orbital region. This effect is known as the Kessler syndrome.  相似文献   

5.
On 11 January 2007, the People’s Republic of China conducted a successful anti-satellite test against one of their defunct polar-orbiting weather satellites. The target satellite, called Fengyun-1C, had a mass of 880 kg and was orbiting at an altitude of about 863 km when the collision occurred. Struck by a direct-ascent interceptor at a speed of 9.36 km/s, the satellite disintegrated, spreading the cataloged fragments between 200 and 4000 km, with the highest concentration near the breakup height. By the end of April 2008, 2377 pieces of debris, including the original payload remnant, had officially been cataloged by the US Space Surveillance Network. Of these, nearly 1% had reentered the Earth’s atmosphere. This deliberate act is the largest debris-generating event on record, and its consequences will adversely affect circumterrestrial space for many years.  相似文献   

6.
Space debris is polluting the space environment. Collision fragment is its important source. NASA standard breakup model, including size distributions, area-to-mass distributions, and delta velocity distributions, is a statistic experimental model used widely. The general algorithm based on the model is introduced. But this algorithm is difficult when debris quantity is more than hundreds or thousands. So a new faster algorithm for calculating debris cloud orbital lifetime and character from spacecraft collision breakup is presented first. For validating the faster algorithm, USA 193 satellite breakup event is simulated and compared with general algorithm. Contrast result indicates that calculation speed and efficiency of faster algorithm is very good. When debris size is in 0.01–0.05 m, the faster algorithm is almost a hundred times faster than general algorithm. And at the same time, its calculation precision is held well. The difference between corresponding orbital debris ratios from two algorithms is less than 1% generally.  相似文献   

7.
Orbital debris is known to pose a substantial threat to Earth-orbiting spacecraft at certain altitudes. For instance, the orbital debris flux near Sun-synchronous altitudes of 600–800 km is particularly high due in part to the 2007 Fengyun-1C anti-satellite test and the 2009 Iridium-Kosmos collision. At other altitudes, however, the orbital debris population is minimal and the primary impactor population is not man-made debris particles but naturally occurring meteoroids. While the spacecraft community has some awareness of the risk posed by debris, there is a common misconception that orbital debris impacts dominate the risk at all locations. In this paper, we present a damage-limited comparison between meteoroids and orbital debris near the Earth for a range of orbital altitude and inclination, using NASA’s latest models for each environment. Overall, orbital debris dominates the impact risk between altitudes of 600 and 1300 km, while meteoroids dominate below 270 km and above 4800 km.  相似文献   

8.
Modeling of LEO orbital debris populations for ORDEM2008   总被引:2,自引:0,他引:2  
The NASA Orbital Debris Engineering Model, ORDEM2000, is in the process of being updated to a new version: ORDEM2008. The data-driven ORDEM covers a spectrum of object size from 10 μm to greater than 1 m, and ranging from LEO (low Earth orbit) to GEO (geosynchronous orbit) altitude regimes. ORDEM2008 centimeter-sized populations are statistically derived from Haystack and HAX (the Haystack Auxiliary) radar data, while micron-sized populations are estimated from shuttle impact records. Each of the model populations consists of a large number of orbits with specified orbital elements, the number of objects on each orbit (with corresponding uncertainty), and the size, type, and material assignment for each object. This paper describes the general methodology and procedure commonly used in the statistical inference of the ORDEM2008 LEO debris populations. Major steps in the population derivations include data analysis, reference-population construction, definition of model parameters in terms of reference populations, linking model parameters with data, seeking best estimates for the model parameters, uncertainty analysis, and assessment of the outcomes. To demonstrate the population-derivation process and to validate the Bayesian statistical model applied in the population derivations throughout, this paper uses illustrative examples for the special cases of large-size (>1 m, >32 cm, and >10 cm) populations that are tracked by SSN (the Space Surveillance Network) and also monitored by Haystack and HAX radars operating in a staring mode.  相似文献   

9.
给出一种基于实验和理论分析的航天器碎片防护结构简化设计方法 ,该方法可用于进行大型空间飞行器碎片防护结构的方案选择和初步结构设计。利用空间碎片的工程环境模型和防护结构几何经验公式 ,采用“设计碎片”的概念 ,对防护结构进行几何结构设计和质量估算 ,并采用改进的防护性能验证算法进行空间碎片的风险评估。通过对惠式防护结构的计算 ,得到的计算结果基本符合实际要求。  相似文献   

10.
11.
Material density is an important, yet often overlooked, property of orbital debris particles. Many models simply use a typical density to represent all breakup fragments. While adequate for modeling average characteristics in some applications, a single value material density may not be sufficient for reliable impact damage assessments. In an attempt to improve the next-generation NASA Orbital Debris Engineering Model, a study on the material density distribution of the breakup fragments has been conducted and summarized in this paper.  相似文献   

12.
Breakup model is the key area of space debris environment modeling. NASA standard breakup model is currently the most widely used for general-purpose. It is a statistical model found based on space surveillance data and a few ground-based test data. NASA model takes the mass, impact velocity magnitude for input and provides the fragment size, area-to-mass ratio, velocity magnitude distributions for output. A more precise approach for spacecraft disintegration fragment analysis is presented in this paper. This approach is based on hypervelocity impact dynamics and takes the shape, material, internal structure and impact location etc. of spacecraft and impactor, which might greatly affect the fragment distribution, into consideration. The approach is a combination of finite element and particle methods, entitled finite element reconstruction (FER). By reconstructing elements from the particle debris cloud, reliable individual fragments are identified. Fragment distribution is generated with undirected graph conversion and connected component analysis. Ground-based test from literature is introduced for verification. In the simulation satellite targets and impactors are modeled in detail including the shape, material, internal structure and so on. FER output includes the total number of fragments and the mass, size and velocity vector of each fragment. The reported fragment distribution of FER shows good agreement with the test, and has good accuracy for small fragments.  相似文献   

13.
根据带电粒子云从破碎点开始向空间扩散过程中粒子云密度和形状的变化规律,以几何形状和起主要作用的因素为特征,定义了球形、椭球形、绳形、螺旋线形、全方位弥漫直至球壳形6个演变阶段.论述了在各个阶段的主要特征和对演变过程起主要作用的因素.分析了在各个阶段电磁场对带电粒子的摄动影响,比较了带电粒子云与不带电粒子云在演化过程上的差异.在球形阶段起主要作用的是分离速度,带电碎片之间的排斥力加快了碎片扩散的速度.从椭球形阶段到球壳形阶段,带电粒子和不带电粒子的演化规律基本一致.带电粒子的演化过程加快或减慢取决于粒子带正电或带负电.将电场摄动力等效于改变地球引力的大小,罗列了阶段转换标志点时刻的计算公式.利用计算机仿真的方法,给出了各个阶段不带电碎片云和带电碎片云分布示意图,验证了演变过程阶段划分和电磁场摄动分析的合理性.   相似文献   

14.
Recent anomalies exhibited by satellites and rocket bodies have highlighted that a population of faint debris exists at geosynchronous (GEO) altitudes, where there are no natural removal mechanisms. Despite previous optical surveys probing to around 10–20 cm in size, regular monitoring of faint sources at GEO is challenging, thus our knowledge remains sparse. It is essential that we continue to explore the faint debris population using large telescopes to better understand the risk posed to active GEO satellites. To this end, we present photometric results from a survey of the GEO region carried out with the 2.54 m Isaac Newton Telescope in La Palma, Canary Islands. We probe to 21st visual magnitude (around 10 cm, assuming Lambertian spheres with an albedo of 0.1), uncovering 129 orbital tracks with GEO-like motion across the eight nights of dark-grey time comprising the survey. The faint end of our brightness distribution continues to rise until the sensitivity limit of the sensor is reached, suggesting that the modal brightness could be even fainter. We uncover a number of faint, uncatalogued objects that show photometric signatures of rapid tumbling, many of which straddle the limiting magnitude of our survey over the course of a single exposure, posing a complex issue when estimating object size. This work presents the first instalment of DebrisWatch, an ongoing collaboration between the University of Warwick and the Defence Science and Technology Laboratory (UK) investigating the faint population of GEO debris.  相似文献   

15.
The intentional breakup of Fengyun-1C on 11 January 2007 created the most severe orbital debris cloud in history. The altitude where the event occurred was probably the worst location for a major breakup in the low Earth orbit (LEO) region, since it was already highly populated with operational satellites and debris generated from previous breakups. The addition of so many fragments not only poses a realistic threat to operational satellites in the region, but also increases the instability (i.e., collision cascade effect) of the debris population there.  相似文献   

16.
Instability of the present LEO satellite populations   总被引:1,自引:1,他引:0  
Several studies conducted during 1991–2001 demonstrated, with some assumed launch rates, the future unintended growth potential of the Earth satellite population, resulting from random, accidental collisions among resident space objects. In some low Earth orbit (LEO) altitude regimes where the number density of satellites is above a critical spatial density, the production rate of new breakup debris due to collisions would exceed the loss of objects due to orbital decay.  相似文献   

17.
The evolution of a magnetized conducting medium suspended in magnetic and gravitational fields is examined. In this paper some effects of the influence of velocity fields on the linear stability properties of such layers are investigated. A fully compressible, three-dimensional analysis of the layer is described. The relevant equations are derived and then solved by the MagnetoHydroDynamic SPEctral Compressible Linear Stability (MHDSPECLS) algorithm, a Chebyshev collocation code. The code allows for the computation of magnetic and thermal effects. A complete stabilization of the system is found above a critical velocity of approximately 2500 m/s.  相似文献   

18.
This paper proposes a comprehensive approach to associate origins of space objects newly discovered during optical surveys in the geostationary region with spacecraft breakup events. A recent study has shown that twelve breakup events would be occurred in the geostationary region. The proposed approach utilizes orbital debris modeling techniques to effectively conduct prediction, detection, and classification of breakup fragments. Two techniques are applied to get probable results for origin identifications. First, we select an observation point where a high detection rate for one breakup event among others can be expected. Second, we associate detected tracklets, which denotes the signals associated with a physical object, with the prediction results according to their angular velocities. The second technique investigates which breakup event a tracklet would belong to, and its probability by using the k-nearest neighbor (k-NN) algorithm.  相似文献   

19.
20.
The continual monitoring of the low Earth orbit (LEO) debris environment using highly sensitive radars is essential for an accurate characterization of these dynamic populations. Debris populations are continually evolving since there are new debris sources, previously unrecognized debris sources, and debris loss mechanisms that are dependent on the dynamic space environment. Such radar data are used to supplement, update, and validate existing orbital debris models. NASA has been utilizing radar observations of the debris environment for over a decade from three complementary radars: the NASA JPL Goldstone radar, the MIT Lincoln Laboratory (MIT/LL) Long Range Imaging Radar (known as the Haystack radar), and the MIT/LL Haystack Auxiliary radar (HAX). All of these systems are highly sensitive radars that operate in a fixed staring mode to statistically sample orbital debris in the LEO environment. Each of these radars is ideally suited to measure debris within a specific size region. The Goldstone radar generally observes objects with sizes from 2 mm to 1 cm. The Haystack radar generally measures from 5 mm to several meters. The HAX radar generally measures from 2 cm to several meters. These overlapping size regions allow a continuous measurement of cumulative debris flux versus diameter from 2 mm to several meters for a given altitude window. This is demonstrated for all three radars by comparing the debris flux versus diameter over 200 km altitude windows for 3 nonconsecutive years from 1998 to 2003. These years correspond to periods before, during, and after the peak of the last solar cycle. Comparing the year to year flux from Haystack for each of these altitude regions indicate statistically significant changes in subsets of the debris populations. Potential causes of these changes are discussed. These analysis results include error bars that represent statistical sampling errors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号