首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SMESE: A SMall Explorer for Solar Eruptions   总被引:1,自引:0,他引:1  
The SMall Explorer for Solar Eruptions (SMESE) mission is a microsatellite proposed by France and China. The payload of SMESE consists of three packages: LYOT (a Lyman imager and a Lyman coronagraph), DESIR (an Infra-Red Telescope working at 35–80 and 100–250 μm), and HEBS (a High-Energy Burst Spectrometer working in X- and γ-rays).

The status of research on flares and coronal mass ejections is briefly reviewed in the context of on-going missions such as SOHO, TRACE and RHESSI. The scientific objectives and the profile of the mission are described. With a launch around 2012–2013, SMESE will provide a unique tool for detecting and understanding eruptions (flares and coronal mass ejections) close to the maximum phase of activity.  相似文献   


2.
SMESE (SMall Explorer For the study of Solar Eruptions) is a Franco-Chinese Microsatellite mission. The scientific objectives of SMESE are the study of coronal mass ejections and flares. Its payload consists of three instrument packages: LYOT, DESIR and HEBS. LYOT is com-posed of a Ly-α (121.6 nm) coronagraph, a Ly-α disk imager and a far UV disk imager. DESIR is an infrared telescope working at 35μm and 150μm. HEBS is a high energy burst spectrometer working in X-rays and γ-rays covering the 10keV to 600 MeV range. SMESE will be launched around 2011, providing a unique opportunity of detecting and understanding eruptions at the maximum activity phase of the solar cycle in a wide range of energies.  相似文献   

3.
The solar photon output from the Sun, which was once thought to be constant, varies considerably over time scales from seconds during solar flares to years due to the solar cycle. This is especially true in the wavelengths shorter than 190 nm. These variations cause significant deviations in the Earth and space environment on similar time scales, which then affects many things including satellite drag, radio communications, atmospheric densities and composition of particular atoms, molecules, and ions of Earth and other planets, as well as the accuracy in the Global Positioning System (GPS). The Flare Irradiance Spectral Model (FISM) is an empirical model that estimates the solar irradiance at wavelengths from 0.1 to 190 nm at 1 nm resolution with a time cadence of 60 s. This is a high enough temporal resolution to model variations due to solar flares, for which few accurate measurements at these wavelengths exist. This model also captures variations on the longer time scales of solar rotation (days) and solar cycle (years). Daily average proxies used are the 0–4 nm irradiance, the Mg II c/w, F10.7, as well as the 1 nm bins centered at 30.5 nm, 121.5 (Lyman Alpha), and 36.5 nm. The GOES 0.1–0.8 nm irradiance is used as the flare proxy. The FISM algorithms are given, and results and comparisons are shown that demonstrate the FISM estimations agree within the stated uncertainties to the various measurements of the solar Vacuum Ultraviolet (VUV) irradiance.  相似文献   

4.
In 2006 to 2008,the main activities in Chinese space astronomy focus on:(1)undertaking some missions set by CNSA,like HXMT,SMESE,wso/vv,SST,KUAFU,and so on;(2)drawing up a long-term plan of Chinese space astronomy.This paper summarizes in brief all these activities.  相似文献   

5.
In 2006 to 2008,the main activities in Chinese space astronomy focus on:(1) undertaking some missions set by CNSA,like HXMT,SMESE,WSO/UV,SST,KUAFU,and so on;(2) drawing up a long-term plan of Chinese space astronomy.This paper summarizes in brief all these activities.  相似文献   

6.
An ultraviolet imaging spectrometer (UVS) has been developed for the PLANET-B spacecraft. The UVS instrument is composed of a grating spectrometer (UVS-G) and a D/H absorption cell photometer (UVS-P). The UVS-G is a flat-field type spectrometer measuring optical emissions in the FUV and MUV range between 115 nm and 310 nm with a spectral resolution of 2 – 3 nm. The UVS-P is a photometer detecting hydrogen (H) and deuterium (D) Lyman α emissions separately by an absorption cell technique. Scientific targets of the UVS experiment are the investigation of (1) hydrogen and oxygen coronas around Mars, (2) the D/H ratio in the upper atmosphere, (3) dayglow, (4) aurora and nightglow, (5) dust, clouds and ozone, and (6) the surface composition of Phobos and Deimos.  相似文献   

7.
The Mercury’s Sodium Atmosphere Spectral Imager (MSASI) on BepiColombo (BC) will address a range of fundamental scientific questions pertaining to Mercury’s exosphere. The measurements will provide new information on regolith–exosphere–magnetosphere coupling as well as new understanding of the dynamics governing the exosphere bounded by the planetary surface, the solar wind and interplanetary space. MSASI is a high-dispersion visible spectrometer working in the spectral range around sodium D2 emission (589 nm). A tandem Fabry–Perot etalon is used to achieve a compact design. We presents a design of the spectral analyzer using Fabry–Perot interferometer. We conclude that: (1) The MSASI optical design is practical and can be implemented without new or critical technology developments; (2) The thermally-tuned etalon design is based on concepts, designs and materials that have good space heritage.  相似文献   

8.
The solar flare of January 20, 2005 (X7.1, 06:36–07:26 UT, maximum at 07:01 UT by the GOES soft X-ray data) was the most powerful one in January 2005 series. The AVS-F apparatus onboard CORONAS-F registered γ-emission during soft X-ray rising phase of this flare in two energy ranges of 0.1–20 MeV and 2–140 MeV. The highest γ-ray energy registered during this flare was ∼140 MeV. Six spectral features were registered in energy spectrum of this solar flare: annihilation + αα (0.4–0.6 MeV), 24Mg + 20Ne + 28Si + neutron capture (1.7–2.3 MeV), 21Ne + 22Ne + 16O + 12С (3.2–5.0 MeV), 16O (5.3–6.9 MeV), one from neutral pions decay (25–110 MeV) and one in energy band 15–21 MeV. Four of them contain typical for solar flares lines – annihilation, nuclear de-excitation and neutron capture at 1H. Spectral feature caused by neutral pions decay was registered during several flares too. Some spectral peculiarities in the region of 15–21 MeV were first observed in solar flare energy spectrum.  相似文献   

9.
Ionospheric response to tropical cyclones (TCs) was estimated experimentally on the example of three powerful cyclones – KATRINA (23–31 August 2005), RITA (18–26 September 2005), and WILMA (15–25 October 2005). These TCs were active near the USA Atlantic coast. Investigation was based on Total Electron Content (TEC) data from the international network of two-frequency ground-based GPS receivers and the NCEP/NCAR Reanalysis data. We studied the spatial–temporal dynamics of wave TEC disturbances over two periods of ranges (02–20 min and 20–60 min). To select the ionospheric disturbances which were most likely to be associated with the cyclones, maps of TEC disturbances were compared with those of meteorological parameters.  相似文献   

10.
The paper reports the nightglow observations of hydroxyl (8–3), (7–2) and (6–2) Meinel band carried out at a low latitude station Kolhapur (16.8°N, 74.2°E, dip latitude 10.6°N), India during November 2002 to May 2005 with the objective of investigating mesopause dynamics based on derived OH rotational temperature. Overall, 132 nights of quality data were collected using filter-tilting photometer and an all-sky scanning photometer. The mean mesopause temperature observed at Kolhapur is 195 ± 11, 196 ± 9 and 195 ± 7 K from OH (8–3), (7–2) and (6–2) band emissions, respectively, using transition probabilities given by Langhoff et al. [Langhoff, S.R., Werner, H.J., Rosmus, P. Theoretical transition probabilities for the OH Meinel system. Journal of Molecular Spectroscopy 118, 507–529, 1986]. Small wave-like variations (periodicities ∼ few hours) existing over long period variations in derived temperatures are also present. A steady decrease of emission intensities from evening to dawn hours has been observed in approximately 59% of nights. No significant change of nightly mean temperatures has been noted. Furthermore, about 62% of observed nightly mean temperatures lie within one error bar of MSISE-90 model predictions.  相似文献   

11.
The relation between coronal mass ejections (CMEs) and solar flares are statistically studied. More than 10,000 CME events observed by SOHO/LASCO during the period 1996–2005 have been analyzed. The soft X-ray flux measurements provided by the Geostationary Operational Environmental Satellite (GOES), recorded more than 20,000 flares in the same time period. The data is filtered under certain temporal and spatial conditions to select the CME–flare associated events. The results show that CME–flare associated events are triggered with a lift-off time within the range 0.4–1.0 h. We list a set of 41 CME–flare associated events satisfying the temporal and spatial conditions. The listed events show a good correlation between the CME energy and the X-ray flux of the CME–flare associated events with correlation coefficient of 0.76.  相似文献   

12.
In this research, as part of working towards improving the IRI over equatorial region, the total electron content (TEC) derived from GPS measurements and IRI-2007 TEC predictions at Chumphon station (10.72°N, 99.37°E), Thailand, during 2004–2006 is analyzed. The seasonal variation of the IRI-2007 TEC predictions is compared with the TEC from the IRI-2007 TEC model with the option of the actual F2 plasma frequency (foF2) measurements as well as the TEC from the GPS and International GNSS service (IGS). The Chumphon station is located at the equatorial region and the low latitude of 3.22°N. For a declining phase of the solar cycle (2004–2006), the study shows that the IRI-2007 TEC underestimates the IRI-2007 TEC with the foF2 observation at the nighttime by about 5 TECU. The maximum differences are about 15 TECU during daytime and 5 TECU during nighttime. The overestimation is more evident at daytime than at nighttime. When compared in terms of the root-mean square error (RMSE), we find that the highest RMSE between GPS TEC and IRI 2007 TEC is 14.840 TECU at 1230 LT in 2004 and the lowest average between them is 1.318 TECU at 0630 LT in 2006. The noon bite-out phenomena are clearly seen in the IRI-2007 TEC with and without optional foF2 measurements, but not on the GPS TEC and IGS TEC. The IRI TEC with optional foF2 measurements gives the lowest RMSE values between IRI TEC predicted and TEC measurement. However, the TEC measurements (GPS TEC and IGS TEC) are more correct to use at Chumphon station.  相似文献   

13.
Comparative analysis of GPS TEC data and FORMOSAT-3/COSMIC radio occultation measurements was carried out for Japan region during period of the extremely prolonged solar minimum of cycle 23/24. COSMIC data for different seasons corresponded to equinox and solstices of the years 2007–2009 were analyzed. All selected electron density profiles were integrated up to the height of 700 km (altitude of COSMIC satellites), the monthly median estimates of Ionospheric Electron Content (IEC) were retrieved with use of spherical harmonics expansion. Monthly medians of TEC values were calculated from diurnal variations of GPS TEC estimates during considered month. Joint analysis of GPS TEC and COSMIC data allows us to extract and estimate electron content corresponded to the ionosphere (its bottom and topside parts) and the plasmasphere (h > 700 km) for different seasons of 2007–2009. Percentage contribution of ECpl to GPS TEC indicates the clear dependence from the time and varies from a minimum of about 25–50% during day-time to the value of 50–75% at night-time. Contribution of both bottom-side and topside IEC has minimal values during winter season in compare with summer season (for both day- and night-time). On average bottom-side IEC contributes about 5–10% of GPS TEC during night and about 20–27% during day-time. Topside IEC contributes about 15–20% of GPS TEC during night and about 35–40% during day-time. The obtained results were compared with TEC, IEC and ECpl estimates retrieved by Standard Plasmasphere–Ionosphere Model that has the plasmasphere extension up to 20,000 km (GPS orbit).  相似文献   

14.
Differences in the external part of the vertical geomagnetic component point to the existence of local inhomogeneities in the magnetosphere or the ionosphere. Usually used magnetic indices are not sufficient to express the state of ionosphere, the common used global Kp index derived in the three-hour interval does not indicate much more rapidly changes appearing in ionosphere. Magnetic index η reflects ionospheric disturbances when other indices show very quiet conditions. Data of ionospheric characteristics (foE, foEs, h’E, h’F2) during 28-day long quiet day conditions (Kp = 0–2) in 2004 were analyzed. The correlations between strong local disturbances in ionosphere during very quiet days and high values of magnetic index η were found. The most sensitive to magnetic influence – ionospheric E layer data (foE characteristic) – reaches median deviations up to (+0.8 MHz and −0.8 MHz) during very low magnetic activity (Kp = 0–1). The high peaks (2–2.7) of the magnetic index η correlate in time with large local median deviations of foE. Such local deviations can suggest local inhomogeneities (vertical drifts) in the ionosphere. The correlation in space is not trivial. The strong peak of η is situated between the positive and negative deviations of foE. Additional observation is connected with correlation in time of the high η value with the negative median deviations of h’F2 (in some cases up to −90 km). The analysis was based on one-minute data recorded at each of 20 European Magnetic Observatories working in the INTERMAGNET network and from 19 ionosondes for 2004. Ionospheric data are sparse in time and in space in opposite to the magnetic data. The map of the magnetic indices can suggest the behavior of ionospheric characteristics in the areas where we have no data.  相似文献   

15.
The Hopkins Ultraviolet Telescope (HUT) was flown aboard the space shuttle Columbia as part of the Astro-1 mission during December 1990. During the nine-day flight, HUT carried out 3 Å resolution spectrophotometry of a wide variety of astronomical objects, including a number of stellar targets, in the 912–1860 Å range of the far ultraviolet. A few nearby stars were observed in the 415–912 Å range of the extreme ultraviolet as well. For nearly all of these targets, the spectra obtained by HUT are the first ever obtained in the spectroscopically rich region between Lyman (1216 Å) and the Lyman limit (912 Å). Here, we present highlights of the results obtained by HUT in a variety of areas of stellar astronomy.  相似文献   

16.
We developed a method of estimation of a relative amplitude dI/I of the total electron content (TEC) variations in the ionosphere as deduced from the data of the global GPS receivers network. To obtain statistically significant results we picked out three latitudinal belts provided in the Internet by the maximum number of GPS sites. They are high-latitudinal belt (50–80°N, 200–300°E; 59 sites), mid latitude belt (20–50°N, 200–300°E; 817 sites), and equatorial belt (±20°N, 0–360°E; 76 sites). The results of the analysis of the diurnal and latitudinal dependencies of dI/I and dI/I distribution probability for 52 days with different levels of geomagnetic activity are presented. It was found that on average the relative amplitude of the TEC variations varies within the range 0–10% proportionally to the value of the Kp geomagnetic index. In quiet conditions the relative amplitude dI/I of the TEC variations at night significantly exceeds the daytime relative amplitude. At high levels of magnetic field disturbances, the geomagnetic control of the amplitude of TEC variations at high and middle latitudes is much more significant than the regular diurnal variations. At the equatorial belt, on average, the amplitude of TEC variations in quiet and disturbed periods almost does not differ. The obtained results may be useful for development of the theory of ionospheric irregularities.  相似文献   

17.
Precursory phenomena in the ionosphere, atmosphere and groundwater before large earthquakes (M > 6.5) are extensively investigated toward the earthquake prediction. Upward tornado type seismic clouds occurred near the epicenter associated with strong LF-VLF radio noises from lightning discharges in the evening of January 9, 1995 [Yamada, T., Oike, K. On the increase of electromagnetic noises before and after the 1995 Hyogo-Ken Nanbu earthquake. In: Hayakawa M. (Ed.), Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes. TERRAPUB, Tokyo, pp. 417–427, 1999] and anomalous foEs increases up to 10 MHz were detected at Shigaraki, 90 km of the epicenter and at Kokubunji, 500 km east of the epicenter [Ondoh, T. Anomalous sporadic-E layers observed before M7.2 Hyogo-ken Nanbu earthquake; Terrestrial gas emanation model. Adv. Polar Upper Atmos. Res. 17, 96–108, 2003; Ondoh, T. Anomalous sporadic-E ionization before a great earthquake, Adv. Space Research 34, 1830–1835, 2004] associated with strong ELF noises from lightning discharges in the daytime on January 15, 1995 [Hata, M., Fujii, T., Takumi, I. EM precursor of large-scale earthquakes in Japan, in: Abstracts of International Workshop on Seismo Electromagnetics (IWSE 2005), Univ. Electro-Communications, Chofu, Tokyo, Japan, March 15–17, pp. 182–186, 2005] before the M7.2 Hyogoken–Nanbu earthquake of January 17, 1995. The anomalous foEs increases occurred at epicentral distances within 500 km that are the same as those of the terrestrial gas emanations along active faults before large earthquakes [King, C.-Y. Gas geochemistry applied to earthquake prediction: An overview. J. Geophys. Res. 91(B12), 12269–12281, 1986]. The anomalous foEs increases seem to be a seismic precursor because geomagnetic and solar conditions were very quiet all day on January 15,1995 and the normal foEs in Japanese winter is below 6 MHz. No significant pre-seismic geomagnetic field variation was detected at epicentral distance of 100 km before this earthquake [Ondoh, T., Hayakawa, M. Anomalous occurrence of sporadic-E layers before the Hyogoken–Nanbu earthquake, M7.2 of January 17, 1995. In: Hayakawa, M. (Ed.), Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes, TERRAPUB, Tokyo, pp. 629–639, 1999; Ondoh, T., Hayakawa, M. Seismo discharge model of anomalous sporadic E ionization before great earthquakes. In: Hayakawa, M., O.A. Molchanov, (Eds.), Seismo Electromagnetics: Lithosphere–Atmosphere–Ionosphere Couplings, TERRAPUB, Tokyo, pp. 385–390, 2002; Ondoh. T., Hayakawa, M. Synthetic study of precursory phenomena of the M7.2 Hyogo-ken Nanbu earthquake. Phys. Chem. Earth 31, 378–388, 2006]. The foF2 decrease and h’F increase occurred before the M7.8 Hokkaido Nansei-Oki earthquake of July 12,1993 in a geomagnetic quiet period [Ondoh, T. Ionospheric disturbances associated with great earthquake of Hokkaido southwest coast, Japan of July 12, 1993. Phys. Earth Planet. Interiors. 105, 261–269, 1998; Ondoh, T. Seismo ionospheric phenomena. Adv. Space Res. 26, 8, 1267–1272, 2000]. Characteristic phase changes at terminator times of Omega 10.2 kHz waves passing 70 km of the epicenter extended toward darker local times by 1 h for 3 days before this earthquake due to lowering of the wave reflection height or ion density increases in the D region [Hayakawa, M., Molchanov, O. A., Ondoh, T., Kawai, E. The precursory signature effect of the Kobe earthquake on VLF subionospheric signals. J. Commun. Res. La., 43, 00. 169–180, 1996]. The radon concentration in the atmosphere over Ashiya fault, Kobe [Yasuoka, Y., Shinogi, M. Anomaly in atmospheric radon concentration: a possible precursor of the 1995 Kobe, Japan, earthquake. Health Phys. 72(5), 759–761, 1997] and in the groundwater at 17 m well in Nishinomiya, Japan [Igarashi, G., Saeki, S., Takahata, N., Sumikawa, K., Tasaki, S., Sasaki, Y., Takahashi, M., Sano, Y. Ground-water radon anomaly before the Kobe earthquake in Japan. Science 269, 60–61, 1995] had gradually increased since 2 months before the M7.2 earthquake, increased suddenly in December 1994, and rapidly returned to the normal low level of October, 1994 [Yasuoka, Y., Shinogi, M. 1997. Anomaly in atmospheric radon concentration: a possible precursor of the 1995 Kobe. Japan, earthquake. Health Phys. 72(5), 759–761.]. Radon concentration changes in the groundwater before the M 7.0 Izu-Oshima-kinkai earthquake, Japan on January 14, 1978 [Wakita, H., Nakamura, Y., Notsu, K., Noguchi, M., Asada, T. 1980. Radon anomaly: a possible precursor of the 1978 Izu-Oshima-kinkai earthquake. Science 207, 882–883] and the M6.8 Chengkung earthquake, Taiwan on December 10, 2003 [Kuo, T., Fan, K., Chen, W., Kuochen, H., Han, Y., Wang, C., Chang, T., Lee, Y. Radon anomaly at the Antung Hot Spring before the Taiwan M6.8 Chengkung earthquake. Proceedings, Thirty-First Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, January 30–February 1, 2006, SGP-TR-179, 2006] are also investigated to find common features of the groundwater radon concentration changes before large earthquakes (M > 6.5) in comparison with those before the M7.2 Hyogoken–Nanbu earthquake. Groundwater radon concentrations before the 3 large earthquakes had shown common characteristic changes of gradually initial ones from the normal level since about 2 months before the earthquake onsets, rapid decreases down to the minimum, and quick increases up to the maximum at 7–20 days before the earthquake onsets, respectively. These are very useful characteristics of pre-seismic radon anomaly for the earthquake prediction or warning. Promising observations toward the earthquake prediction are also discussed.  相似文献   

18.
Solar and space radiation have been monitored using the R3D-B2 radiation risks radiometer-dosimeter on board a recent space flight on the Russian satellite Foton M2 within the ESA Biopan 5 facility mounted on the outside of the satellite exposed to space conditions. The solar radiation has been assayed in four wavelength bands (UV-C, 170–280 nm, UV-B, 280–315 nm), UV-A (315–400 nm) and PAR (photosynthetic active radiation, 400–700 nm). The data show an increasing tumbling rotation of the satellite during the mission. The photodiodes do not show a cosine response to the incident light which has been corrected. After calibration of the signals using the extraterrestrial spectrum, doses have been calculated for each orbit, for each day and for the total mission as basic data for the biological material which has been exposed in parallel in the Biopan facility. Cosmic ionizing radiation has been monitored and separated in 256 deposited energy spectra, which were further used for determination of the absorbed dose rate and flux. Basic data tables were prepared to be used by other Biopan 5 experiments. The paper summarizes the results for the Earth radiation environment at the altitude (262–304 km) of the Foton M2 spacecraft. Comparisons with the predictions of NASA Earth radiation environment experimental models AE-8 and AP-8, and the PSB97 model are also presented, which calculate the fluxes of ionizing radiation from a simulation. AP-8 is a model for trapped radiation.  相似文献   

19.
Using the physics based model SUPIM and FORMOSAT-3/COSMIC electron density data measured at the long deep solar minimum (2008–2010) we investigate the longitude variations of the north–south asymmetry of the ionosphere at low latitudes (±30° magnetic). The data at around diurnal maximum (12:30–13:30 LT) for magnetically quiet (Ap ? 15) equinoctial conditions (March–April and September–October) are presented for three longitude sectors (a) 60°E–120°E, (b) 60°W–120°W and (c) 15°W–75°W. The sectors (a) and (b) have large displacements of the geomagnetic equator from geographic equator but in opposite hemispheres with small magnetic declination angles; and sector (c) has large declination angle with small displacement of the equators; vertical E × B drift velocities also have differences in the three longitude sectors. SUPIM investigates the importance of the displacement of the equators, magnetic declination angle, and E × B drift on the north–south asymmetry. The data and model qualitatively agree; and indicate that depending on longitudes both the displacement of the equators and declination angle are important in producing the north–south asymmetry though the displacement of the equators seems most effective. This seems to be because it is the displacement of the equators more than the declination angle that produces large north–south difference in the effective magnetic meridional neutral wind velocity, which is the main cause of the ionospheric asymmetry. For the strong control of the neutral wind, east–west electric field has only a small effect on the longitude variation of the ionospheric asymmetry. Though the study is for the long deep solar minimum the conclusions seem valid for all levels of solar activity since the displacement of the equators and declination angle are independent of solar activity.  相似文献   

20.
Human habitation and animal holding experiments in a closed environment, the Closed Ecology Experiment Facilities (CEEF), were carried out. The CEEF were established for collecting experimental data to estimate carbon transfer in the ecosystem around Rokkasho nuclear fuel reprocessing plant. Circulation of O2 and CO2, and supply of food from crops cultivated in the CEEF were conducted for the first time in the habitation experiments. Two humans known as eco-nauts inhabited the CEEF, living and working in the Plant Module (PM) and the Animal and Habitation Module (AHM), for a week three times in 2005. On a fresh weight basis, 82% of their food was supplied from 23 crops including rice and soybean, cultivated and harvested in the PM, in the 2nd and 3rd experiments. For the goats, the animals held in the experiments, all of their feed, consisting of rice straw, soybean plant leaves, and peanut shells and peanut plant leaves, was produced in the PM in the 2nd and 3rd experiments. The O2 produced in the PM by photosynthesis of the crops was separated by the O2 separator using molecular sheaves, then accumulated, transferred, and supplied to the AHM atmosphere. The CO2 produced in the AHM by respiration of the humans and animals was separated by the CO2 separator using solid amine, then accumulated, transferred, and supplied to the PM atmosphere. The amount of O2 consumed in the AHM was 46–51% of that produced in the PM, and the amount of CO2 produced in the AHM was 43–56% of that consumed in the PM. The surplus of O2 and the shortage of CO2 was a result of the fact that waste of the goats and the crops and part of the human waste were not processed in these habitation experiments. The estimated amount of carbon ingested by the eco-nauts was 64–92% of that in the harvested edible part of the crops. The estimated amount of carbon ingested by the goats was 36–53% of that in the harvested inedible part of the crops. One week was not enough time for determination of gas exchange especially for humans and animals, because fluctuation of their gas exchange was quite high. The amount of transpired water collected as condensate was 818–938 L d−1, and it was recycled as replenishing water compensating transpiration loss of nutrient solution. The amount of waste nutrient solution discharged from the PM was 1421–1644 L d−1. The waste nutrient solutions from rice and other crops were processed through micro filters (MFs) separately. The MF filtrated solutions were processed with reverse osmosis (RO) membrane filter separately and divided into filtrated water and concentrated waste nutrient solution. The concentrated waste nutrient solution from the crops other than rice was processed through an ultra-micro filter (UF) and reused, although that from rice was discharged in 2005. Concentrations of nutritional ions in the UF filtrated solution were determined, the depleted ions were added back, the UF filtrated solution was diluted with the RO membrane filtrated water, and the nutrient solution for the crops other than rice was regenerated. The nutrient solution for rice was newly made each time, using concentrated solution from an external source and the RO membrane filtrated water. Average amounts of water used in the AHM (L d−1) were determined as follows: drinking by humans (filtrated water), 1.5; cooking, etc. (filtrated water other than for drinking), 14.3; drinking by goats, 3.8; showering (hot water), 13.2; showering (cold water), 0.1; washing of hand and face and brushing teeth, 4.1; washing of dishes, dish clothes and towels, 36.4; and washing of animal holding tools, 0.3. The waste water was processed by a RO purification system and recycled for toilet flushing and animal pens washing. A circulation experiment for water was started in 2006 and a circulation experiment for waste materials is planned for 2007. In 2006, a single duration of the air circulation experiments was 2 weeks, although the human habitants were changed after 1 week.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号