首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
We explore the imprints of the solar wind interaction with the local interstellar medium on spectral properties of backscattered solar Ly-α radiation. We employ a newly developed effective model for the interstellar H atom velocity distribution function in the heliosphere ( Katushkina and Izmodenov, 2011). The model takes into account both global effects of H atom perturbations at the heliospheric boundaries and local (i.e. within 10–20 AU from the Sun) effects of the solar ionization, charge exchange, solar gravitation and radiation pressure.  相似文献   

2.
The composition of anomalous cosmic rays (ACR), is thought to reflect that of the neutral atoms in the very local interstellar medium, such as helium, nitrogen and neon. Recent observations in the outer heliosphere have provided the first unambiguous evidence for ACR argon, carbon and hydrogen, as well, and a method has been developed to relate the ACR abundances to those of the interstellar medium. The observations also indicate persistent negative latitudinal gradients, opposite to that observed by Pioneer 11 during the previous minimum in solar activity. These and other results are consistent with the presence of gradient and curvature drift during solar minimum periods when the tilt of the interplanetary neutral sheet is small.  相似文献   

3.
In recent years the variability of the cosmic ray flux has become one of the main issues not only for the interpretation of the abundances of cosmogenic isotopes in cosmochronic archives like, e.g., ice cores, but also for its potential impact on the terrestrial climate. It has been re-emphasized that the cosmic ray flux is not only varying due to the solar activity-induced changes of the solar wind but also in response to the changing state of the interstellar medium surrounding the heliosphere. We demonstrate the significance of these external boundary condition changes along the galactic orbit of the Sun for the flux as well as spectra of cosmic rays. Such interstellar–terrestrial relations are a major topic of the International Heliophysical Year 2007.  相似文献   

4.
A solar wind parcel evolves as it moves outward, interacting with the solar wind plasma ahead of and behind it and with the interstellar neutrals. This structure varies over a solar cycle as the latitudinal speed profile and current sheet tilt change. We model the evolution of the solar wind with distance, using inner heliosphere data to predict plasma parameters at Voyager. The shocks which pass Voyager 2 often have different structure than expected; changes in the plasma and/or magnetic field do not always occur simultaneously. We use the recent latitudinal alignment of Ulysses and Voyager 2 to determine the solar wind slowdown due to interstellar neutrals at 80 AU and estimate the interstellar neutral density. We use Voyager data to predict the termination shock motion and location as a function of time.  相似文献   

5.
An overview is presented of magnetic-field-related effects in the solar wind (SW) interaction with the local interstellar medium (LISM) and the different theoretical approaches used in their investigation. We discuss the possibility that the interstellar magnetic field (ISMF) introduces north–south and east–west asymmetries of the heliosphere, which might explain observational data obtained by the Voyager 1 and Voyager 2 spacecraft. The SW–LISM interaction parameters that are responsible for the deflection of the interstellar neutral hydrogen flow from the direction of propagation of neutral helium in the inner heliosheath are outlined. The possibility of a strong ISMF, which increases the heliospheric asymmetry and the H–He flow deflection, is discussed. The effect of the combination of a slow-fast solar wind during solar minimum over the Sun’s 11-year activity cycle is illustrated. The consequences of a tilt between the Sun’s magnetic and rotational axes are analyzed. Band-like areas of an increased magnetic field distribution in the outer heliosheath are sought in order to discover regions of possible 2–3 kHz radio emission.  相似文献   

6.
We implemented a 2D Monte Carlo model to simulate the solar modulation of galactic cosmic rays. The model is based on the Parker’s transport equation which contains diffusion, convection, particle drift and energy loss. Following the evolution in time of the solar activity, we are able to modulate a local interstellar spectrum (LIS), that we assumed isotropic beyond the termination shock, down to the Earth position inside the heliosphere. In this work we focused our attention to the cosmic ray positron fraction at energy below ∼10 GeV, showing how the particle drift processes could explain different results for AMS-01 and PAMELA. We compare our modulated spectra with observations at Earth, and then make a prediction of the cosmic ray positron fraction for the AMS-02 experiment.  相似文献   

7.
Observations made with the two Voyager spacecraft confirmed that the solar wind decelerates to form the heliospheric termination shock. Voyager 1 crossed this termination shock at ∼94 AU in 2004, while Voyager 2 crossed it in 2007 at a different heliolatitude, about 10 AU closer to the Sun. These different positions of the termination shock confirm the dynamic and cyclic nature of the shock’s position. Observations from the two Voyager spacecraft inside the heliosheath indicate significant differences between them, suggesting that apart from the dynamic nature caused by changing solar activity there also may exist a global asymmetry in the north–south (polar) dimensions of the heliosphere, in addition to the expected nose–tail asymmetry. This relates to the direction in which the heliosphere is moving in interstellar space and its orientation with respect to the interstellar magnetic field. In this paper we focus on illustrating the effects of this north–south asymmetry on modulation of galactic cosmic ray Carbon, between polar angles of 55° and 125°, using a numerical model which includes all four major modulation processes, the termination shock and the heliosheath. This asymmetry is incorporated in the model by assuming a significant dependence on heliolatitude of the thickness of the heliosheath. When comparing the computed spectra between the two polar angles, we find that at energies E < ∼1.0 GeV the effects of the assumed asymmetry on the modulated spectra are insignificant up to 60 AU from the Sun but become increasingly more significant with larger radial distances to reach a maximum inside the heliosheath. In contrast, with E > ∼1.0 GeV, these effects remain insignificant throughout the heliosphere even very close to the heliopause. Furthermore, we find that a higher local interstellar spectrum for Carbon enhances the effects of asymmetric modulation between the two polar angles at lower energies (E < ∼300 MeV). In conclusion, it is found that north–south asymmetrical effects on the modulation of cosmic ray Carbon depend strongly on the extent of the geometrical asymmetry of the heliosheath together with the assumed value of the local interstellar spectrum.  相似文献   

8.
基于ACE飞船的资料,通过时序迭加方法统计分析了最近两个太阳活动极小年时期(2007.0-2009.0和2016.5-2019.0年)的宇宙线计数与太阳风参数的关系.结果表明,宇宙线的计数受太阳风共转流相互作用区的强烈影响,宇宙线计数变化与快慢太阳风流界面的位置密切相关,例如流界面的穿越通常伴随着宇宙线计数的下降.分析表明,第一时段的具有“雪犁”效应的宇宙线计数下降对应于流界面附近的扩散系数急剧下降,而第二时段的非“雪犁”效应的计数下降可能是由穿越流界面后的扩散系数增大引起的.日球层电流片也与宇宙线计数变化存在一定的相关性,宇宙线粒子在日球层电流片附近存在一定程度的堆积.太阳风对宇宙线的作用机制表明,宇宙线的漂移和扩散效应决定了其在1AU附近的分布变化.   相似文献   

9.
In this paper we analyze the spatial distribution of galactic cosmic rays during periods of maximum solar activity of the cycles 21, 22 and 23. We have used a two dimensional model to solve the cosmic ray transport equation. This model includes all relevant physical processes: diffusion, convection, drift and shock effects on cosmic ray propagation inside the heliosphere. We focused on the study of the radial distribution of galactic cosmic rays, and compare our results with the spacecraft observations for two energies (175 MeV H and 265 MeV/n He). Although the radial intensities of galactic cosmic rays can be explained qualitatively with all three local interstellar spectra (LISs) used in this work, we applied a reduced chi-squared analysis to investigate the best LIS that could fit the data.  相似文献   

10.
11.
We developed a one dimensional model of particle transport in the heliosphere. As opposite to widely used models, we apply a method where a quasi-particle is traced back in time. The model gives us the possibility to work on the possible existence of reentrant particles in the heliosphere that can be hardly solved by the traditional forward tracking method. Particles escape from the heliosphere and may reenter back. We estimate how these particles affect the modulation process in the heliosphere. Presented here are the results for different values of particles mean free path in the interstellar space and for different interstellar magnetic field values.  相似文献   

12.
The long outstanding question of where the heliospheric (solar) modulation of galactic cosmic rays actually begins, in terms of spatial position, as well as at what high kinetic energy, can now be answered. Both answers are possible by using the results of an advanced numerical model, together with appropriate observations. Voyager 1 has been exploring the outskirts of the heliosphere and is presently entering what can be called the very local interstellar medium. It has been generally expected, and accepted, that once the heliopause is crossed, the local interstellar spectrum (LIS) should be measured in situ by the Voyager spacecraft. However, we show that this may not be the case and that modulation effects on galactic cosmic rays can persist well beyond the heliopause. For example, proton observations at 100 MeV close to the heliopause can be lower by ∼25% to 40% than the LIS, depending on solar modulation conditions. It is also illustrated quantitatively that significant solar modulation diminishes above ∼50 GeV at Earth. It is found that cosmic ray observations above this energy contain less that 5%5% solar modulation effects and should therefore reflect the LIS for galactic cosmic rays. Input spectra, in other words the very LIS, for solar modulation models are now constrained by in situ observations and can therefore not any longer be treated arbitrarily. It is also possible for the first time to determine the lower limit of the very LIS from a few MeV/nuc to very high energies.  相似文献   

13.
Observations made with the two Voyager spacecraft confirmed that the solar wind decelerates to form the heliospheric termination shock and that it has begun its merger with the local interstellar medium. The compression ratio of this shock affects galactic cosmic rays when they enter the heliosphere. Hydrodynamic (HD) models show that the compression ratio can have a significant latitude dependence; with the largest value in the nose direction of the heliosphere, becoming significantly less towards the polar regions. The modulation effects of such large latitude dependence are studied, using a well-established numerical drift and shock modulation model. We focus on computing the modulated spectra for galactic protons with emphasis on the radial and polar gradients in the equatorial plane and at a polar angle of θ = 55°, corresponding to the heliolatitude of Voyager 1. Two sets of solutions are computed and compared each time; with and without a latitude dependence for the compression ratio. All computations are done for the two magnetic field polarity cycles assuming solar minimum conditions. Including the termination shock in the model allows the study of the re-acceleration of galactic protons in the outer heliosphere. We find that for the A < 0 polarity cycle the intensity between ∼200 MeV and ∼1 GeV in the vicinity of the shock in the heliospheric equatorial plane may exceed the local interstellar value specified at the heliopause. Unfortunately, at θ = 55°, the effect is reduced. This seems not possible during an A > 0 cycle because significant modulation is then predicted between the heliopause and the termination shock, depending on how strong global gradient and curvature drifts are in the heliosheath. The overall effect of the shock on galactic protons in the equatorial plane is to reduce the total modulation as a function of radial distance with respect to the interstellar spectrum. Making the compression ratio latitude dependent enhances these effects at energies E < 200 MeV in the equatorial plane. At larger heliolatitudes these effects are even more significant. The differences in the modulation between the two drift cycles are compelling when the compression ratio is made latitude dependent but at Earth this effect is insignificant. A general result is that the computed radial gradient changes for galactic protons at and close to the TS and that these changes are polarity dependent. In line with previous work, large polarity dependent effects are predicted for the inner heliosphere and also close to the shock’s position in the equatorial plane. In contrast, at θ = 55°, the largest polarity effect occurs in the middle heliosphere (50 AU), enhanced by the latitude dependence of the compression ratio. At this latitude, the amount of proton modulation between the heliopause and the termination shock is much reduced. If galactic cosmic rays were to experience some diffusive shock acceleration over the 100–1000 MeV range at the shock, the radial gradient should change its sign in the vicinity of the shock, how large, depends on the compression ratio and the amount of drifts taking place in the outer heliosphere. The effective polar gradient shows a strong polarity dependence at Earth but this dissipates at θ = 55°, especially with increasing radial distance. This tendency is enhanced by making the compression ratio latitude dependent.  相似文献   

14.
We discuss the asymmetry of the heliospheric discontinuities obtained from the analysis of 3D modeling of the solar wind (SW) interaction with local interstellar medium (LISM). The flow of charged particles is governed by the ideal MHD equations and the flow of neutral particles is described by the Boltzmann equation. The emphasis is made on the asymmetries of the termination shock (TS) and the heliopause under the combined action of the interstellar and interplanetary magnetic fields (ISMF and IMF) in the presence of neutral hydrogen atoms whose transport through the heliosphere is modeled kinetically, using a Monte Carlo approach. We show that the deflection of neutral hydrogen flow from its original direction in the unperturbed LISM is highly anisotropic and evaluate a possible angle between the hydrogen deflection plane measured in the SOHO SWAN experiment and the plane containing the ISMF and LISM velocity vectors for different ISMF strengths. It is shown that the ISMF of a strength greater than 4 μG can account for the 10 AU difference in the TS heliocentric difference observed during its crossing by the Voyager 1 and Voyager 2 spacecraft, which however results in a larger discrepancy between the calculated and observed velocity distributions. The effect of a strong ISMF on the distribution of plasma quantities in the inner heliosheath and on 2–3 kHz radio emission is discussed.  相似文献   

15.
The solar wind is a high Reynolds’ number plasma flow of solar origin that permeates the whole heliosphere. It is also the only accessible medium in which to study collisionless magnetohydrodynamic turbulence performing direct measurements. This represents a topic of fundamental importance to both plasma physics and astrophysics. During the past decades, in situ observations on the ecliptic and at high heliographic latitudes have been very valuable to shed some light on the intricate nature of space plasma turbulence. In this brief review, we will mainly describe the evolution experienced by the turbulence as the solar wind expands into the interplanetary space. We will also address implications due to different processes of local generation of turbulence which might be at work on the ecliptic and at high latitude. Moreover, the fact that solar wind fluctuations are not isotropic and poorly single scale-invariant, two of the fundamental hypotheses at the basis of Kolmogorov’s theory (K41), will give us the possibility to discuss also the relevance of intermittency in the study of space plasma turbulence.  相似文献   

16.
Time-dependent kinetic-continuum model of the solar wind interaction with the two-component local interstellar cloud (LIC) has been developed recently [Izmodenov, V., Malama, Y.G., Ruderman, M.S. Solar cycle influence on the interaction of the solar wind with local interstellar cloud. Astron. Astrophys. 429, 1069–1080, 2005a.]. Here, we adopted this model to the realistic solar cycle, when the solar wind parameters at the Earth’s orbit are taken from space data. This paper focuses on the results related to the termination shock (TS) excursion with the solar cycle that may help to understand Voyager 1 data obtained at and after the crossing of the termination shock and to predict the time of the TS crossing by Voyager 2.  相似文献   

17.
The interstellar heliopause probe (IHP) is one of ESA’s technology reference studies (TRS). The TRS aim to focus the development of strategically important technologies of relevance to future science missions by studying technologically demanding and scientifically interesting missions that are currently not part of the science mission programme.

Equipped with a highly integrated payload suite (HIPS), the IHP will perform in situ exploration of the heliopause and the heliospheric interface. The HIPS, which is a standard element in all TRSs, miniaturize payloads through resource reduction by using miniaturized components and sensors, and by sharing common structures and payload functionality.

To achieve the scientific requirements of the mission, the spacecraft is to leave the heliosphere as close to the heliosphere nose as possible and reach a distance of 200 AU from the Sun within 25 years. This is possible by using a trajectory with two solar flybys and a solar sail with characteristic acceleration of 1.1 mm/s2, which corresponds to a 245 × 245 m2 solar sail and a sail thickness of 1–2 μm. The trajectory facilitates a modest sail design that could potentially be developed in a reasonable timeframe.

In this paper, an update to the results of studies being performed on this mission will be given and the current mission baseline and spacecraft design will be described. Furthermore, alternative solar sail systems and enabling technologies will be discussed.  相似文献   


18.
能量中性原子(Energetic Neutral Atoms, ENA, 简称能原子)是指在日球层内外空间, 拥有>0.1keV动能的原子.在此空间领域并没有温度>106K的中性气体, 但却充满动能>0.1keV的正离子.因此能原子A应该是A+离子与原地稀薄气体B原子或分子交换电荷所产生的, 即A++BA+B+. 电荷交换涉及极小的动能变化, 新生的能原子A和离子B+基本上各自保持原有动能. 离子B+随即被当地磁场俘获, 能原子A则脱离磁场约束并携带其原属离子群的成分和能量信息而直线运动, 成为遥测空间等离子体的有效媒介. 美国人造卫星 IBEX (Interstellar Boundary Explorer) 直接探测得到来自日球层以外星际空间的能原子, 大幅延伸了利用能原子遥测空间等离子体的领域. 本文据此论述了空间能原子的发现, 综述了探测空间能原子的基本概念与实例、取得的主要成果、仪器设计和研制进展以及未来空间利用能原子遥测的发展趋势.   相似文献   

19.
The modulation of cosmic ray electrons in the heliosphere plays an important role in improving our understanding and assessment of the processes applicable to low-energy galactic electrons. A full three-dimensional numerical model based on Parker’s transport equation is used to study the modulation of 10 MeV galactic electrons, in particular inside the heliosheath. The emphasis is placed on the role that perpendicular diffusion plays in causing the extraordinary large increase in the observed intensities of these electrons in the heliosheath. The modelling is compared with observations of 6–14 MeV electrons from the Voyager 1 mission. Results are shown for the radial intensity profiles of these electrons, as well as the modulation effects of varying the extent of the heliosheath by changing the location of the termination shock and the heliopause and the value of the local interstellar spectrum. We confirm that the heliosheath acts as a modulation ‘barrier’ for low-energy galactic electrons. The significance of this result depends on how wide the inner heliosheath is; on how high the very local interstellar spectrum is at these low energies (E < 100 MeV) and on how small perpendicular diffusion is inside the inner heliosheath.  相似文献   

20.
The solar activity displays variability and periodic behaviours over a wide range of timescales, with the presence of a most prominent cycle with a mean length of 11 years. Such variability is transported within the heliosphere by solar wind, radiation and other processes, affecting the properties of the interplanetary medium. The presence of solar activity–related periodicities is well visible in different solar wind and geomagnetic indices, although their time lags with respect to the solar cycle lead to hysteresis cycles. Here, we investigate the time lag behaviour between a physical proxy of the solar activity, the Ca II K index, and two solar wind parameters (speed and dynamic pressure), studying how their pairwise relative lags vary over almost five solar cycles. We find that the lag between Ca II K index and solar wind speed is not constant over the whole time interval investigated, with values ranging from 6 years to 1 year (average 3.2 years). A similar behaviour is found also for the solar wind dynamic pressure. Then, by using a Lomb-Scargle periodogram analysis we obtain a 10.21-year mean periodicity for the speed and 10.30-year for the dynamic pressure. We speculate that the different periodicities of the solar wind parameters with respect to the solar 11-year cycle may be related to the overall observed temporal evolution of the time lags. Finally, by accounting for them, we obtain empirical relations that link the amplitude of the Ca II K index to the two solar wind parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号