首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
对等离子体诱导流场特性进行研究,有利于解决双稳态非对称分离涡带来的连续比例控制困难的问题。在封闭光学玻璃箱体内,应用介质阻挡放电等离子体对20°顶角圆锥附近静止大气进行了定常和脉冲循环控制,对等离子体诱导的圆锥截面绕流速度场进行了二维PIV测量,对定常控制和脉冲循环控制下最大绕流速度及最大轴向涡量进行了比较分析。实验结果表明:相对于定常控制模式,脉冲循环控制下沿垂直于圆锥截面对称面径线分布的时间平均切向速度和轴向涡量范围较广;在脉冲循环控制下,动量传递的主要表现在离散涡的形成而不是气流的加速。  相似文献   

2.
应用单侧脉冲放电等离子体对细长圆锥前体非对称涡进行了主动流动控制研究。通过风洞试验,对不同截面的周向静态压力分布和动态压力变化进行了测量。同时,对不同截面的周向压力分布进行积分,计算其当地侧向力、当地侧向力增量以及圆锥段侧向力和偏航力矩。研究结果表明,通过单侧脉冲放电可以实现对细长圆锥前体侧向力和力矩的比例控制,并且具有良好的线性度。第八截面动态压力数据的全时间平均和相位锁定平均都达到了收敛。通过比较第八截面相位锁定平均下的压力分布,得出流场的响应滞后于此次50Hz的脉冲调制频率。  相似文献   

3.
火花型激励合成射流瞬时流场测试   总被引:1,自引:0,他引:1       下载免费PDF全文
采用粒子图像测速仪(PIV)相位锁定采样方法对一个特定结构的火花型合成射流的非定常流场进行了实验测量,得到了火花型合成射流形成的涡对在外场的发展过程;同时采用热线风速仪对喷孔下游固定位置的瞬时速度进行了测试,对火花型合成射流激励参数(放电器储能、激励频率)的影响进行了初步的对比分析。结果表明:合成射流在孔口喷射初期呈现球面扩散状,在发展过程中不断剪切和卷吸外部气流,形成一系列旋向相反的涡串;合成射流的最大瞬时峰值法向速度出现在放电后大约005T时刻,随后其作用范围迅速扩大,瞬时峰值速度和涡量逐渐降低。在该激励器结构参数和激励参数范围内,合成射流随激励频率和放电器储能的增大而有所增加。   相似文献   

4.
在圆锥-圆柱组合体模型半顶角为10°的圆锥前体尖端附近布置介质阻挡放电等离子体激励器,采用正弦波高压电源进行等离子体定常开/关激励。实验在3.0m×1.6m的直流式风洞中进行,迎角固定在45°,基于圆锥前体底面直径的实验雷诺数为5×10~4。对模型表面周向压力分布进行了测量,同时对测压截面处的空间涡流场进行了粒子图像测速。通过对截面压力分布和空间流场的PIV结果的分析,给出了侧向力、涡核中心位置、轴向涡量、涡核半径、次涡核半径、旋涡最大切向速度、环量等参数随等离子体激励的变化特性。结果表明:在等离子体激励的作用下,同侧的分离剪切层及其卷起的涡向外侧移动,同时另一侧的向着靠近模型的方向移动。同时激励器的作用使左舷侧涡心位置偏离次涡核的几何中心,且使得双侧的涡核和次涡核的尺寸增大。  相似文献   

5.
为了在更高的风速下实现圆锥前体分离涡的控制,了解AC-DBD和NS-DBD激励器的激励特性,应用交流(AC)放电和纳秒脉冲(NS)放电等离子体激励对20°顶角的圆锥-圆柱组合体圆锥段前体非对称流场进行主动流动控制实验。实验在低速开口风洞中进行,迎角45°,风速5~22m/s,流动控制方式为等离子激励器关闭、左舷或右舷等离子体激励器开启三种模式。结果表明:风速5m/s时,通过AC-DBD的左、右舷激励可控制圆锥前体的非对称流场实现镜像对称,NS-DBD则无明显作用效果;随着风速的提高,AC-DBD对非对称载荷的控制作用逐渐减小,与此同时NS-DBD的控制作用逐渐增加;风速22m/s时,NS-DBD可实现圆锥前体非对称流场的镜像对称控制,而AC-DBD则无明显作用效果;相对于AC-DBD等离子体激励,NS-DBD对于更高速度下的分离涡流场控制是有效的。  相似文献   

6.
对不同出口间距零质量射流组的流场结构进行了PIV实验.采用相位锁定技术测量了周期内不同相位的瞬时流场速度矢量, 显示了两股射流涡对之间相互作用、融合成为一股射流的全过程.发现射流出口间距越大, 射流组融合完成所需的时间、空间历程越长.在射流组融合完成后的下游截面上, 速度分布和单射流相似, 具有自模性.虽然融合未完成前各截面不存在整体自模性, 但两股射流外侧仍满足自模性.   相似文献   

7.
为了研究厚度对活塞型激励器产生的零质量射流流场的影响,利用粒子影像测速仪对h=1.5 mm,2mm和3.5 mm三种不同狭缝厚度的零质量射流流场进行了实验研究。采用相位锁定技术,在一个振动周期内捕捉了12个不同相位时刻的流场图片。实验发现,合成射流时间平均流场的横向速度剖面与二维常规射流相似,具有自模化特性;合成射流的质量通量、动量通量、中心线速度的峰值与狭缝厚度成正比。随着狭缝厚度增加,与质量通量和动量通量峰值相应的距出口的无量纲距离减小,而与中心线速度峰值相对应的无量纲距离增加。  相似文献   

8.
采用高时间分辨率的层析PIV技术,测量了水洞壁湍流三维速度分量空间分布的时间序列,应用局部平均速度结构函数概念对流向速度信号进行多尺度分解,以流向速度分量的局部平均速度结构函数过零点作为特征量检测壁湍流中拟序结构猝发的喷射和扫掠过程,应用空间相位平均技术提取拟序结构猝发的喷射和扫掠过程各速度分量、涡量分量、拟序结构速度应变率分量以及调制雷诺应力分量的空间相位平均拓扑形态。为了引入平衡态涡粘模型假设模拟调制雷诺应力,研究了拟序结构猝发过程中调制雷诺应力分量和速度变形率分量的空间分布形态,发现两者之间的空间相位分布不一致。由于存在时空相位不同步性,说明需要考虑大尺度拟序涡结构引起动量传递的时空弛豫效应。应用经典的线性平衡态下的Boussinesq涡粘模型不能准确地描述壁湍流拟序结构动量传递非平衡现象的物理机理。对于壁湍流拟序结构动力学方程中调制雷诺应力的模拟,应采用包含时空相位信息的复涡粘张量模型。由于雷诺应力与速度变形率的时空不同步性,对非平衡非局部湍流场的数值模拟提出了一个挑战性的问题,建议采用包含相位信息的复涡粘张量模型来模拟雷诺应力张量,从而更加符合雷诺应力演化的物理机理,这一模型有可能成为一个很有发展前景的封闭模型,从而更加准确地预测工业领域中广泛存在的非平衡湍流。  相似文献   

9.
应用PIV技术测量压电型自耦合射流   总被引:1,自引:0,他引:1  
李念  张堃元  沙江 《航空学报》2007,28(1):20-24
 采用PIV对激励信号频率为300 Hz、 400 Hz和500 Hz的矩型出口自耦合射流流场进行测量,应用相位锁定技术,测得一个激励周期内12个相位的瞬时流场,并由120张瞬时流场图像的平均得到了射流流场时均流动特性。分析了3种频率下的流场结构,发现在当前实验条件下,射流的扩张半角近35°,稳定增长区的中心线速度随流向距离的-0.511次方变化。当频率为f=400 Hz时流量增长率高达4,动量增长率最高达4.5。当沿流向距离y/h>40后自耦合射流的动量呈下降趋势,这与定常二维平面射流动量保持不变的规律不同。  相似文献   

10.
为了研究上下游叶片的相位对低压涡轮流动的影响机理,使用商用 CFX 软件进行数值模拟,并辅以试验校核。选取了 0°和180°2个流动相差较大的相位,分析边界层分离与转捩、边界层积分参数,对吸力面的载荷系数、壁面剪力、附面层形状因子及 动量厚度等进行对比,并从边界层的瞬态流动分析着手,在1个尾迹扫掠周期内对Klebanoff条纹、K-H涡等结构进行分析。结果 表明:不同相位的流动特性差异主要取决于势流的压力扰动与速度扰动的相位,这将决定尾迹诱导转捩与寂静区之间的主导关 系。当压力扰动与速度扰动同相时,寂静区处于逆压梯度逐渐增强的阶段,保持层流的能力被削弱;反之当二者异相时寂静区强 度较大,尾迹诱导转捩带来的湍流损失可以被寂静区平衡。通过瞬态分析可知,0°相位尾迹诱导全展向K-H涡的卷起,全展向涡 的破碎会带来较大的能量耗散,且其诱导的Klebanoff条纹强度较大,二者共同作用使得尾缘动量损失较大。  相似文献   

11.
为揭示端壁等离子体气动激励抑制高负荷压气机叶栅角区流动分离的影响规律和流场特征,在不同流场参数和激励条件下分别开展了微秒脉冲和纳秒脉冲等离子体气动激励抑制叶栅流动分离的实验研究.结果表明:端壁等离子体气动激励可以有效抑制叶栅角区的流动分离,其作用效果在攻角为3°时最佳,随攻角的增大逐渐下降;微秒脉冲激励的流动控制效果随来流速度的增大而降低,随激励电压和占空比的增大而提高,最佳非定常脉冲频率为500Hz;在较高来流速度下,微秒脉冲激励的作用效果十分微弱,但纳秒脉冲激励能够有效抑制角区流动分离;纳秒脉冲激励的流动控制效果随激励电压增大而提高,激励频率对控制效果至关重要,作用效果随激励频率的增大而不断增强,但当激励频率为5kHz时,作用效果有所下降.   相似文献   

12.
基于PIV技术的单圆孔脉冲射流流场特征   总被引:1,自引:1,他引:0  
对稳态射流及脉冲射流冲击靶板时的流场特性结构进行了探索和分析。采用高频粒子图像测速技术,在射流管口到冲击靶板间距为6倍管径的条件下,对稳态射流进口雷诺数为6 000的稳态射流及脉冲频率为20 Hz的脉冲射流进行了实验测量,得到了射流核心区、壁面射流区及滞止区内的速度分布。研究发现:①由于射流剪切作用的影响,脉冲射流核心区的最大轴向脉动速度为稳态射流的3倍。②滞止区内,由于射流的剪切作用和壁面的滞止作用,导致了脉冲射流轴向速度梯度最大为稳态射流的2倍,同时,滞止区内的最大脉动速度是稳态射流脉动速度的3倍。③脉冲射流对壁面的卷吸以及旋涡的产生和传播过程,破坏了壁面射流区稳定的速度边界层。相比稳态射流,脉冲射流的流场增加了湍流相干结构的含能并产生周期性的大尺度卷吸涡。  相似文献   

13.
A 15° swept wing with dielectric barrier discharge plasma actuator is designed.Experimental study of flow separation control with nanosecond pulsed plasma actuation is performed at flow velocity up to 40 m/s. The effects of the actuation frequency and voltage on the aerodynamic performance of the swept wing are evaluated by the balanced force and pressure measurements in the wind tunnel. At last, the performances on separation flow control of the three types of actuators with plane and saw-toothed exposed electrodes are compared. The optimal actuation frequency for the flow separation control on the swept wing is detected, namely the reduced frequency is 0.775, which is different from 2-D airfoil separation control. There exists a threshold voltage for the low swept wing flow control. Before the threshold voltage, as the actuation voltage increases, the control effects become better. The maximum lift is increased by 23.1% with the drag decreased by 22.4% at 14°, compared with the base line. However, the best effects are obtained on actuator with plane exposed electrode in the low-speed experiment and the abilities of saw-toothed actuators are expected to be verified under high-speed conditions.  相似文献   

14.
激励强度对等离子体合成射流的影响   总被引:1,自引:0,他引:1  
通过在Navier-Stokes方程组中添加体积力源项的方法,模拟了不同激励强度下等离子体合成射流,并研究了激励强度对流场特性的影响。计算结果表明,随着激励强度的增大,激励器附近壁面处的涡量增大,对应的涡对中心诱导的流向速度增大,从而导致涡核更加远离壁面,并被拉伸变长。对于等离子体合成射流的时均流场,其中轴线上的流向速度随着激励强度增大整体变大。在较小的激励强度下,射流半宽度随着激励强度的增大而增大;而激励强度很大时(>6 Dc0),激励强度对半宽度基本没有影响。沿流向的动量通量也随激励强度的增大单调增加。  相似文献   

15.
从诱导气流速度和体积力两个方面开展了介质阻挡放电等离子体气动激励的动量特性研究,对不同激励参数下的诱导气流速度进行了测量与结果分析;通过对体积力的实验测量与理论计算,对比研究了体积力的变化规律与主要影响因素.结果表明:等离子体气动激励可以增大气流速度,但随着气流速度的增大,等离子体气动激励的加速效果减弱;激励电压或激励频率增大,体积力均表现为线性增加,但激励电压增大时可以更好的增大体积力;与增大电极内间距相比,增大下层电极宽度可以产生更大的体积力.   相似文献   

16.
双极性等离子体激励器圆柱绕流控制实验研究   总被引:5,自引:0,他引:5  
在低速风洞中利用多级双极性等离子体激励器控制圆柱绕流的流动分离。实验风速U∞=10m/s,基于圆柱直径的雷诺数Re=2.8×10^4,在实验中将两组三级双极性等离子体激励器布置在圆柱模型肩部,利用粒子图像测速技术测量圆柱的尾流场。实验结果表明,采用定常和非定常激励均能抑制圆柱尾迹区,等离子体激励强度是影响激励器对圆柱绕流控制能力的重要因素;非定常脉冲激励耗电少,对流动控制能力强,效率明显高于定常激励,脉冲激励频率影响等离子体激励器对流动的控制能力。在实验风速为10m/s时,脉冲激励频率与圆柱涡脱落频率一致,流动控制效果较好。  相似文献   

17.
等离子体激励控制激波与边界层干扰流动分离数值研究   总被引:3,自引:1,他引:2  
针对高超声速进气道激波与边界层干扰流动分离控制问题,提出了一种低功率重频非定常激励方式,并基于雷诺平均Navier-Stokes(N-S)方程,从唯象学的角度出发,将等离子激励简化为功率密度源项,对比研究了定常与低功率重频非定常等离子体气动激励的作用机理与控制效果。结果表明:定常激励的能量沉积作用对于激波控制非常有效,并可诱导出斜激波,但是对于流动分离控制而言,其能量沉积显然过于强大,反而会使流动分离更加严重,无法满足控制要求;当采用低功率重频非定常激励方式时,对于不同功率密度的情况均存在最佳激励时长与频率,当功率密度为5.0×109W/m3时,最大射流速度可以达到895m/s,并且可以在一定程度上减弱激波与边界层干扰流动分离。   相似文献   

18.
等离子体气动激励抑制机翼失速分离的实验   总被引:1,自引:0,他引:1  
进行了等离子体气动激励抑制机翼失速分离的风洞实验,研究了等离子体气动激励频率、电压、占空比和激励位置等对流动控制效果的影响.研究表明:在来流速度35m/s时,等离子体气动激励可以有效地抑制机翼大攻角下吸力面的流动分离,将机翼临界失速迎角由17°提高到19°;施加激励后,机翼最大升力系数提高了9.45%,阻力系数减小20.9%;激励频率在200Hz时,控制效果最好,对应的量纲一激励频率为1;迎角越大,流动分离越严重,需要更大的激励电压才能够有效抑制流动分离;最佳激励位置在流动分离起始点的前缘;在流动控制效果相当时,减小占空比可以降低能耗.   相似文献   

19.
毫秒脉冲等离子体激励改善飞翼的气动性能实验   总被引:3,自引:0,他引:3  
在来流速度为30m/s时,进行了毫秒脉冲介质阻挡放电等离子体激励改善飞翼气动性能的风洞实验.等离子体激励器布置在飞翼前缘,峰峰值电压为9.5kV时,放电的脉冲能量在0.1mJ/cm量级.通过六分量测力天平测力研究了脉冲激励频率和占空比对升/阻力系数、升阻比和俯仰力矩系数的作用效果.结果表明:等离子体激励可以有效改善飞翼大攻角气动特性;在最佳无量纲脉冲激励频率F+≈1时,临界失速迎角由14°提高到17°,最大升力系数提高10%;占空比对流动控制效果影响较大,减小占空比可以降低能耗,实验中最佳占空比为5%;俯仰力矩系数的变化表明施加等离子体激励改善了飞翼纵向静稳定性.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号