首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 281 毫秒
1.
飞机跑道荷载响应深度变化规律   总被引:2,自引:2,他引:0  
针对目前刚性道面未考虑道面结构参数、起落架机型及滑跑速度与响应深度之间关系的现状,借助ANSYS软件建立45m×15m×10m的有限元模型,计算了8种面层厚度、6种面层模量、5种基层厚度、5种基层模量和5种土基模量下B737-800动荷载的响应深度,并类比另4种机型的计算结果,分析了起落架构型对结果的影响;同时形成了B737-800起飞过程中响应深度的动态变化曲线.研究结果表明,响应深度随面层厚度、面层模量、基层厚度与基层模量的增大呈线性减小趋势,随土基模量的增大而增大,两者关系服从二次函数,且土基模量对响应深度最为敏感;同时起落架构型对响应深度也有较大贡献;飞机起飞过程中,响应深度呈先小幅增加而后迅速减小的非线性变化.研究结果为机场道面结构参数的选取和场道维护提供了理论依据和参考.   相似文献   

2.
    
接缝的传荷性能需定期检测以指导机场刚性道面的维护和使用,针对现有检测方法(如落锤式弯沉仪)难以进行偏远山区和交通运输困难地区的机场测试问题,提出了普通加载车辆跳车试验法,探究传力杆自身参数和道面结构参数对传荷性能和道面振动特性(基频、幅值、相位差)的影响规律,找出主要影响因素为传力杆弹性模量和土基模量;建立多因素下传荷性能和道面振动特性的定量关系,并通过室外试验验证该公式的准确性和方法的可行性。  相似文献   

3.
针对集成式伺服作动器液压回路的特点和选择切换功能,分析了能源切换原理、选择活门的压力损失规律及其对作动器活塞运动速度的影响。电磁阀通过控制选择活门阀芯的位置以实现不同能源的切换。分析了选择活门压力损失的成因分布与特征。由分析可知,流道结构突变处的局部损失占比最大,沿程损失可忽略不计,选择活门压力损失与流入流量的平方呈比例关系。同时,拟合出了活塞伸出运动和收缩运动时的压力损失经验系数。建立了作动器左右腔流量、压力和活塞动力学模型,发现某型选择活门压力损失使作动器活塞伸出速度下降了4.9%,收缩速度下降了5.2%。由于活塞受力情况一致,选择活门的压力损失不影响负载力与活塞速度的关系,速度下降比例与负载力无关;阀芯开度直接影响着流经系统流量,系统流量影响着流体与流道的撞击强度和频率,进而影响了选择活门的压力损失程度,速度下降百分比随阀芯开度增大而增大。分析结果可为高可靠性、高精度航空作动器伺服控制系统的设计提供技术支持。  相似文献   

4.
航空航天领域对于流量计量的要求愈发严格,研究流量计的动态特性对于提高其在各类环境下的测量性能和在线测量性能具有重要意义。以涡轮流量计为例,通过数值仿真研究了其动态性能。在涡轮流量计入口处分别施加脉冲和阶跃2种干扰信号,通过数据处理,得到系统的幅频特性、相频特性、传递函数和阶跃响应曲线。结果表明:涡轮流量计可以作为一阶系统进行分析,脉动流的频率是影响涡轮流量计性能的主要因素;与5 Hz工况相比,50 Hz工况下幅值比降低了60%;相位差随频率的增加而增大,最大相位差近40°;阶跃响应的速度和阶跃流的大小与阶跃幅值有关,负阶跃产生的时间常数大于正阶跃产生的时间常数。  相似文献   

5.
针对高速高压高温/低温工况下动压密封变形问题,以动压密封的典型结构为研究对象,考虑动环的支撑和约束,建立热固耦合分析模型,研究热载荷、力载荷和约束对动环端面微变形的影响,并提出动环端面微变形改善方法。结果表明:多载荷共同作用时,温差对动环端面微变形影响最大,其次是转速和压力;在2种情况下,动环端面微变形受温度值的影响很小,主要与温差有关;相比低温,动环端面微变形更易受高温的影响,单位温差的变形变化量为3~4倍;动环形心距旋转中心越远,动环端面微变形受转速影响越大,且呈抛物线关系;动环端面微变形与压差呈线性关系。对高速高压宽温域的动压密封,控制动环端面微变形,首先,应降低动环的温差;其次,若转速够高,应适当增加动环厚度,通过扩大形心变化区域能增加86%的动环端面微变形范围,若转速不够高,通过合理的结构设计约束动环内表面以控制动环翻转,最大能降低65.2%的动环端面微变形;最后,合理设计的轴向压紧力能进一步确保动环端面微变形维持在极小范围内。   相似文献   

6.
针对钛合金在普通铣削(CM)时因切削速度低而面临的切削力大、薄壁工件变形大、加工效率低、刀具磨损严重等问题,采用高速超声振动铣削(HUVM)方法加工钛合金,实验研究其加工表面质量和切削力。从运动学角度出发对HUVM方法进行运动学分析。搭建包括超声振动系统、加工系统及测量系统在内的高速超声振动铣削实验平台。采用单因素实验对比CM和HUVM这2种方法对钛合金加工切削力和表面质量的影响规律。研究结果表明:与CM加工相比,HUVM加工可以使切削力降低32.6%~35.3%。并且HUVM加工表面粗糙度虽略有增加,但是表面结构可以更加均匀;此外,HUVM加工表面残余应力均为压应力,其绝对值随着每齿进给量和切削速度的增大而降低,而CM加工表面残余应力为拉应力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号