首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 281 毫秒
1.
针对当前红外弱小飞行目标特征不明显、背景干扰大等问题,提出了一种基于深度学习的红外弱小目标识别算法。检测框架以YOLOv4模型为基础,通过使用K-means++算法对训练集的候选框进行聚类处理,在初始大小的选取上放弃随机生成初始点的方式,在样本集里选取某一个样本作为初始中心使锚框(anchor)大小的选取更加合理。在模型结构中引入卷积注意力模块,使算法模型计算资源分配更合理,对红外弱小飞行目标的特征信息更加敏感。改进空间金字塔池化模块,使用平均池化可以更多保留图像的原始信息,降低天基成像中的噪点与坏点的影响。仿真实验表明采用K-means++计算Anchor大小时准确率可以达到80.13%,在加入了SPP和CBAM模块后之后在测试集上算法识别准确率达到了83.3%,经过对模型的修改有效提升了对红外弱小飞行目标识别的准确率。  相似文献   

2.
针对红外图像的特点,提出了一种YOLOv5-IF算法,使用了基于残差机制的特征提取网络,实现了不同特征层之间信息的高效交互,能够得到更丰富的目标语义信息。通过改进YOLOv5的检测方案,增加更大尺度的检测头,有效提升了红外图像中小目标的检测概率。针对计算平台资源有限、算法实时性等问题,设计了Detection Block模块,并由此构建了特征整合网络,该模块不仅能提升算法检测精度,还有效缩减了模型参数量。在FLIR红外自动驾驶数据集上,本文算法的平均准确率(mAP)为74%,参数量仅19.5MB,优于现有的算法。  相似文献   

3.
针对现有安全帽检测算法难以检测小目标、密集目标等缺点,提出一种基于YOLOv5s的安全帽检测改进算法。采用DenseBlock模块来代替主干网络中的切片结构,提升网络的特征提取能力;在网络颈部检测层加入SE-Net通道注意力模块,引导模型更加关注小目标信息的通道特征,以提升对小目标的检测性能;对数据增强方式进行改进,丰富小尺度样本数据集;增加一个检测层以便能更好地学习密集目标的多级特征,从而提高模型应对复杂密集场景的能力。此外,构建一个面向密集目标及远距离小目标的安全帽检测数据集。实验结果表明:所提改进算法比原始YOLOv5s算法平均精确率(mAP@0.5)提升6.57%,比最新的YOLOX-L及PP-YOLOv2算法平均精确率分别提升1.05%与1.21%,在密集场景及小目标场景下具有较强的泛化能力。  相似文献   

4.
红外弱小目标的检测识别是军事侦察和遥感探测领域的一项关键技术。针对现有的传统目标检测方法普遍存在的检测误报率高、环境适应性差等问题,本文设计提出了一种基于Swin Transformer和多尺度特征融合的红外弱小目标检测方法。该方法首先在基于编解码Unet网络架构的基础上,通过引入Swin Transformer的自注意力机制代替常规的卷积核来进行目标特征的分层提取,从而有助于在更大的感受野下挖掘目标在不同尺度下的潜在信息;之后,通过设计一个自底向上的跨层特征融合模块作为网络模型的解码器,可以从复杂背景中保留红外弱小目标特征,并将目标的浅层局部信息和深层语义信息进行充分融合。试验测试结果表明,所提方法在红外小目标公共测试数据集SIRST上能够实现0.747的交并比指标(IoU),以及0.752的归一化交并比指标(nIoU),其性能均优于其它典型方法,在不同复杂场景下均拥有更好的检测效果。  相似文献   

5.
高空下、视复杂背景下弱小目标的检测一直是红外弱小目标跟踪的难点,提出了一种基于帧间特征点匹配的红外弱小目标检测的方法,将复杂背景下的动态弱小目标检测问题看作是帧间复杂背景的运动估计补偿问题,消除了背景杂波对红外目标的影响,进而达到了抑制背景的目的。做出了该算法与现在常用的频域高通滤波、形态学Top-hat滤波两种小目标检测算法的对比,并将目标局部信杂比和目标检测的虚警率作为算法的有效性评价指标。试验结果表明,通过准确的地补偿复杂背景的帧间位移量,再结合帧间差分的方式,后红外弱小目标检测的信杂比提升了2倍以上,检测得到的虚警率低于20%。  相似文献   

6.
红外图像背景抑制可以为红外目标检测识别任务提供支撑。在实际的应用场景中,红外图像中的目标多为弱小目标,其特征不明显,一般背景抑制算法难以将其从背景中分离,而达不到背景抑制的最佳效果。针对上述问题,提出使用Pos-FCN网络实现红外图像背景抑制的方法,该方法使用特征卷积结构,依靠高分辨网络结构获取弱小目标的特征信息,通过大尺寸卷积特征图的前向传播方式实现了高维度特征中弱小目标信息的保留,使用卷积降采样特征提取和上采样图像恢复方式实现了端到端的处理,并在前置训练阶段引入了位置信息强化网络骨干特征提取效果。结果表明,该方法处理后的红外图像中信杂比提高至3.877,对比度提高至0.297,检测率达到了93.6%,因此,该方法可以实现良好的背景抑制效果。  相似文献   

7.
为解决航空发动机部件表面缺陷检测精度低、检测速度慢的问题,提出一种改进的YOLOv4算法进行智能检测。在路径聚合网络(PANet)结构中融合浅层特征与深层特征,增大特征检测尺度,同时去除自下而上的路径增强结构,提高小目标检测精度和整体检测速度;根据各类缺陷数量不同的情况,优化聚焦损失中的平衡参数,增加权重因子调节各类缺陷的损失权重,将改进后的聚焦损失代替分类误差中的交叉熵损失函数,降低样本不平衡和难易样本对检测精度的影响。实验表明:相比于原始YOLOv4算法,改进后的YOLOv4算法在测试集上的平均精度均值(mAP)为90.10%,提高了2.17%;检测速度为24.82 fps,提高了1.58 fps,检测精度也高于单发多框检测(SSD)算法、EfficientDet算法、YOLOv3算法和YOLOv4-Tiny算法。  相似文献   

8.
基于改进型YOLO算法的遥感图像舰船检测   总被引:1,自引:1,他引:0  
目标检测算法在PASCAL VOC等数据集中取得了非常好的检测效果,但是在大尺度遥感图像中舰船目标的检测准确率却很低。因此,针对可见光遥感图像的特点,在YOLOv3-Tiny算法的基础上增加了特征映射模块,为预测层提供丰富的语义信息,同时在特征提取网络中引用残差网络,提高了检测准确率,从而有效提取舰船特征。实验结果表明:优化后的M-YOLO算法检测准确率为94.12%。相比于SSD和YOLOv3算法,M-YOLO算法的检测准确率分别提高了11.11%和9.44%。   相似文献   

9.
针对水下光学图像目标检测过程中由于水中光线衰弱严重、图像环境复杂和拍摄设备移动等造成的生物识别精度低的问题,提出了基于改进YOLOv5s的弱光水下生物目标实时检测算法YOLOv5s-underwater。针对弱光水下光线衰弱的问题,引入了限制对比度自适应直方图均衡(CLAHE)算法对输入图像进行预处理,解决了颜色失真和图像毛糙的问题。针对复杂的弱光水下图像环境,提出了快速空间金字塔池化(SPPF)模块,解决了水下物体区分度低和特征损失严重的问题。针对拍摄设备移动带来的场景和形态变化问题,提出了一种基于旋转窗口的SwinTransformer模块,提高了模型的泛化能力。针对水下小目标,修改了网络模型结构,提高了小目标的检测能力。仿真和实验结果表明:所提算法相较于YOLOv5s检测精度提高30.7%,证明了算法的有效性。  相似文献   

10.
目标检测技术广泛应用于交通、医疗、安保和航天等领域.目前,目标检测技术面临目标微弱、背景复杂、目标被遮挡等挑战[1].针对星表非结构化模拟地形采集的图像中岩石和石块小目标检测识别率低、误识别率高的问题,研究了当下效果最好、模型轻量化的YOLOv5目标检测算法,在其基础上进行改进优化器与优化检测框重复检测效果的一种满足实时性要求的岩石目标检测算法.具体通过引入空标签负样本、结合随机梯度下降法SGD(stochastic gradient descent)优化模型和非极大值抑制参数调节方法,提升YOLOv5网络模型的特征描述能力和分类准确率.利用在地面试验场采集的复杂地形图像作为数据集,并采用mAP(mean average pre-cision)、画面每秒传输帧数(FPS)、准确率和召回(P-R)曲线等作为性能指标,对所提出的目标检测网络进行了试验验证.结果 表明本文提出的改进网络拥有更高的准确率和更低的虚警率,同时保持原有算法的实时性.  相似文献   

11.
鲁棒的红外小目标视觉显著性检测方法   总被引:1,自引:1,他引:0  
鲁棒的红外(IR)小目标检测是自动目标检测的关键技术,低信噪比条件下的红外小目标检测一直是业内研究热点.为了能有效地检测红外小目标,对红外小目标若干表观特征及其视觉显著性进行了分析,提出一种基于多尺度图像块统计序对比度(MOCIP)的红外小目标视觉显著性鲁棒检测方法,采用两步级联多尺度图像块统计序对比度算法抑制背景和噪声,提升目标强度,获得红外小目标显著性图,并利用自适应阈值实现目标检测.本文详细给出了红外小目标视觉显著性的检测算法,使用红外小目标图像对检测性能进行了实验验证,并与其他检测方法进行了对比.实验结果表明,所提出的方法能够在低信噪比条件下克服噪声和复杂背景的影响,有效地对红外小目标视觉显著性进行检测.   相似文献   

12.
红外成像系统具备优秀的夜间可视能力,并且具备良好的抗干扰能力、识别伪装的能力,在军事领域的应用日益广泛。可见光成像系统易受光照强度的影响,无法在封闭空间或夜间等弱光条件下工作,而物体的红外辐射能量仅与物体温度和物质特性有关,所以红外成像不需要考虑光照强度,可以在全天候时段工作。红外目标检测可以应用单波段和多波段的方式进行探测,单波段探测由于目标信息有限,往往目标会存在小、弱、暗等问题,导致检测能力不理想,而多波段检测通过利用不同波段信息的冗余性、互补性,大幅度提高目标检测和识别的概率,提高识别伪装的能力。但双波段目标检测中存在很多技术难点,对红外小目标检测技术进行了分类,分析了技术难点,按不同的方法进行了总结描述。再对双波段目标检测技术进行了详细的描述,并选取了常见算法进行了性能比较和原理分析,突出了双波段目标检测的优势。  相似文献   

13.
精确的飞机检测与追踪方法可以有助于提升我国军事实力,但是目前对小目标飞机进行有效追踪方法较少。基于深度学习的目标追踪方法较传统的方法性能更佳优越,因此针对传统方法对于小目标追踪性能不佳,本文提出了一种基于YOLOv3以及卡尔曼滤波器的飞机追踪方法以获得更好的追踪性能,该算法首先通过改进的YOLOv3算法对视频中的图像进行检测,在识别到视频中的飞机之后,通过卡尔曼滤波器对飞机的运动轨迹进行预测,并通过匈牙利算法进行数据关联。实验结果显示,该算法对小尺度飞机的检测性能较传统的YOLOv3有接近5%的提升,且对飞机的追踪效果精度高且实时性能,具有较高的军事应用价值。  相似文献   

14.
目标检测与跟踪技术广泛应用于交通、医疗、安保和航天等领域.目前,目标检测与跟踪技术面临目标微弱、背景复杂、目标被遮挡等挑战.同时,随着脑科学研究的不断深入,人们对人脑视觉系统的理解逐渐透彻,利用类脑计算解决复杂背景下高精度目标检测与跟踪问题成为相关领域的重要研究方向.本文结合神经工程导向的类脑模型和计算机工程导向的深度神经网络(Deep Neural Networks, DNNs),提出多种基于类脑模型与深度神经网络的目标检测与跟踪算法,包括:基于演算侧抑制的目标检测算法,基于结构 对比度(Structure Contrast, SC)视觉注意模型的弱小目标检测算法和基于记忆机制与分层卷积特征的目标跟踪算法.实验结果表明,将类脑模型和深度神经网络应用于目标检测和跟踪领域,有利于实现复杂条件下的高精度目标检测和鲁棒性目标跟踪.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号