首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
固体火箭羽焰的辐射特性及其温度测量技术述评   总被引:8,自引:1,他引:8  
叙述了固体火箭羽焰的辐射特性,简要地介绍了热电偶法、等离子体法、光纤测温法、谱线反转法、发射吸收法、喇曼光谱法、微波衰减法、红外测温法和多光谱测温法的原理和应用。评述了这些火焰测温方法在羽焰测温上的适应性,并指出多光谱测温技术是羽焰测温的发展趋势之一。  相似文献   

2.
合成了2,6-二氨基-3,5-二硝基吡啶-1-氧化物(ANPyO) Bi(III)含能配合物,采用FTIR、元素分析和XPS光电子能谱表征了含能配合物的结构.根据结构表征结果推测,ANPyO Bi(III)含能配合物的分子式为Bi(C5H4N5O5)3,金属离子与配体的配比为1∶3.其中,可能的配位方式为:每个配体ANPyO 2-位的氨基脱去一个氢原子,分别以NH和N→O结构单元中N原子和O原子与Bi(III)形成配位键.ANPyO Bi(III)含能配合物的撞击感度、摩擦感度和冲击波感分别为220 cm、36 kg和5.8 mm.采用TG-DTG和DSC测试考察了ANPyO Bi(III)含能配合物的热分解行为,配合物在50~450 ℃范围内热分解过程由一个吸热熔融峰和分解放热峰组成,相应的峰温分别为320.6 ℃和346.5 ℃,配合物热分解剩余残渣量为31.2%.同时,考察了配合物对高氯酸铵热分解的催化作用,并采用Kissinger法对纯AP和AP混合物热分解过程低温分解阶段和高温分解阶段的表观活化能和指前因子进行了计算.结果表明,ANPyO Bi(III)含能配合物可使高氯酸铵高温分解阶段和低温分解阶段的峰温提前63.6 ℃和63.1 ℃,表观活化能降低23.1 kJ/mol和61.5 kJ/mol,表观分解热增加339.3 J/g.可发现,ANPyO Bi(III)含能配合物对AP的热分解具有显著的催化作用.  相似文献   

3.
The fossil record of the subsurface biosphere is sparse. Results obtained on subsurface filamentous fabrics (SFF) from >225 paleosubsurface sites in volcanics, oxidized ores, and paleokarst of subrecent to Proterozoic age are presented. SFF are mineral encrustations on filamentous or fibrous substrates that formed in subsurface environments. SFF occur in association with low-temperature aqueous mineral assemblages and consist of tubular, micron-thick (median 1.6 micron) filaments in high spatial density, which occur as irregular masses, matted fabrics, and vertically draped features that resemble stalactites. Micron-sized filamentous centers rule out a stalactitic origin. Morphometric analysis of SFF filamentous forms demonstrates that their shape more closely resembles microbial filaments than fibrous minerals. Abiogenic filament-like forms are considered unlikely precursors of most SFF, because abiogenic forms differ in the distribution of widths and have a lower degree of curvature and a lower number of direction changes. Elemental analyses of SFF show depletion in immobile elements (e.g., Al, Th) and a systematic enrichment in As and Sb, which demonstrates a relation to environments with high flows of water. Sulfur isotopic analyses are consistent with a biological origin of a SFF sample from a Mississippi Valley-Type deposit, which is consistent with data in the literature. Fe isotopes in SFF and active analogue systems, however, allow no discrimination between biogenic and abiogenic origins. The origin of most SFF is explained as permineralized remains of microbial filaments that possibly record rapid growth during phases of high water flow that released chemical energy. It is possible that some SFF formed due to encrustation of mineral fibers. SFF share similarities with Microcodium from soil environments. SFF are a logical target in the search for past life on Mars. The macroscopic nature of many SFF allows for their relatively easy in situ recognition and targeting for more detailed microstructural and geochemical analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号