首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The Mars Sample Return Project.   总被引:1,自引:0,他引:1  
The Mars Sample Return (MSR) Project is underway. A 2003 mission to be launched on a Delta III Class vehicle and a 2005 mission launched on an Ariane 5 will culminate in carefully selected Mars samples arriving on Earth in 2008. NASA is the lead agency and will provide the Mars landed elements, namely, landers, rovers, and Mars ascent vehicles (MAVs). The French Space Agency CNES is the largest international partner and will provide for the joint NASA/CNES 2005 Mission the Ariane 5 launch and the Earth Return Mars Orbiter that will capture the sample canisters from the Mars parking orbits the MAVs place them in. The sample canisters will be returned to Earth aboard the CNES Orbiter in the Earth Entry Vehicles provided by NASA. Other national space agencies are also expected to participate in substantial roles. Italy is planning to provide a drill that will operate from the Landers to provide subsurface samples. Other experiments in addition to the MSR payload will also be carried on the Landers. This paper will present the current status of the design of the MSR missions and flight articles.  相似文献   

2.
Ragnar E Lofstedt   《Space Policy》2003,19(4):1096-292
In 2014 NASA may bring back a sample of Mars rocks, soil and atmosphere to Earth. The most likely location for returning this sample will be somewhere in the central USA. The purpose of the project is to understand the history of Mars; the samples may also reveal evidence of previous or existing life on Mars. Confirmation of this possibility would rank as one of the most profound discoveries in human history, yet to date it is unclear how the public in the USA actually views the mission. This study addresses this issue by examining the views of 70 residents of Cincinnati, OH. These perceptions are examined in light of the conceptual ideas and theories presented in the risk perception and communication literatures. While respondents were generally favourable towards a Mars sample return mission, and largely unworried by possible risks, they did have concerns about the use of plutonium for electrical propulsion and were somewhat ill-informed about the issues.  相似文献   

3.
4.
Manzey D 《Acta Astronautica》2004,55(3-9):781-790
Human exploratory missions to Mars represent the most exciting future vision of human space flight. With respect to the distance to travel and mission duration, these missions will provide unique psychological challenges that do not compare to any other endeavor humans ever have attempted. The present paper presents outcomes of two recent projects sponsored by the European Space Agency--Humex and Reglisse--where these challenges and risks have been analyzed in some detail, and where concepts for future research have been developed. This presentation involves three steps. At first, it will be shown that our current psychological knowledge derived from orbital spaceflight and analogue environments is not sufficient to assess the specific risks of mission into outer space. Secondly, new psychological challenges of missions to Mars will be identified with respect to three different areas: (1) individual adaptation and performance, (2) crew interactions, and (3) concept and methods of psychological countermeasures. Finally, different options and issues of preparatory psychological research will be discussed.  相似文献   

5.
《Acta Astronautica》2007,60(4-7):571-587
This paper discusses the findings for [Interior] configuration options, habitability and architectural aspects of a first human spacecraft to Mars.In 2003 the space architecture office LIQUIFER was invited by the European Space Agency's (ESA) AURORA Program committee to consult the scientists and engineers from the European Space and Technology Center (ESTEC) and other European industrial communities with developing the first human mission to Mars, which will take place in 2030, regarding the architectural issues of crewed habitats.The task was to develop an interior configuration for a transfer vehicle (TV) to Mars, especially a transfer habitation module (THM) and a surface habitat module (SHM) on Mars. The total travel time Earth—Mars and back for a crew of six amounts to approximately 900 days. After a 200-day-flight three crewmembers will land on Mars in the Mars excursion vehicle (MEV) and will live and work in the SHM for 30 days. For 500 days before the 200-day journey back the spacecraft continues to circle the Martian orbit for further exploration. The entire mission program is based on our present knowledge of technology. The project was compiled during a constant feedback-design process and trans-disciplinary collaboration sessions in the ESA-ESTEC concurrent design facility.Long-term human space flight sets new spatial conditions and requirements to the design concept. The guidelines were developed from relevant numbers and facts of recognized standards, interviews with astronauts/cosmonauts and from analyses about habitability, sociology, psychology and configuration concepts of earlier space stations in combination with the topics of the individual's perception and relation of space.Result of this study is the development of a prototype concept for the THM and SHM with detailed information and complete plans of the interior configuration, including mass calculations. In addition the study contains a detailed explanation of the development of the Design process including all suggested design and configuration options.  相似文献   

6.
This work presents a review of studies of the Martian magnetic fields during the early Soviet missions to Mars in 1971–1974, which never approached Mars by closer than 1000 km before the experiment with the Magnetometer/Electronic Reflectometer (MAG/ER) on board the Mars Global Surveyor spacecraft, which could descend to altitudes of 80–100 km. At present, the experiment with the magnetometer (MAG) onboard the American MAVEN spacecraft adds new data, but the map of distribution of remnant magnetic fields of Mars and the picture of their interaction with the solar wind are already formed and, at its core, obviously, will not be revised. Thus, it would be very instructive to consider the following in detail: (a) what is already known regarding the features and distribution of remnant magnetic fields on Mars; (b) how they control the interaction of solar wind with a weakly magnetized planet (Mars); and (c) what is its distinction from another nonmagnetized planet (Venus).  相似文献   

7.
火星探测器减速着陆技术分析   总被引:1,自引:0,他引:1  
火星的大气环境和地球差异较大,存在着许多未知的因素,火星探测的减速着陆同样充满了风险和挑战。文章通过对美国火星探测减速着陆的重点技术进行分析,并归纳总结了火星探测器减速着陆技术的发展趋势。  相似文献   

8.
The Mars Program Plan includes an integrated and coordinated set of future candidate missions and investigations that meet fundamental science objectives of NASA and the Mars Exploration Program (MEP). At the time this paper was written, these possible future missions are planned in a manner consistent with a projected budget profile for the Mars Program in the next decade (2007-2016). As with all future missions, the funding profile depends on a number of factors that include the exact cost of each mission as well as potential changes to the overall NASA budget. In the current version of the Mars Program Plan, the Astrobiology Field Laboratory (AFL) exists as a candidate project to determine whether there were (or are) habitable zones and life, and how the development of these zones may be related to the overall evolution of the planet. The AFL concept is a surface exploration mission equipped with a major in situ laboratory capable of making significant advancements toward the Mars Program's life-related scientific goals and the overarching Vision for Space Exploration. We have developed several concepts for the AFL that fit within known budget and engineering constraints projected for the 2016 and 2018 Mars mission launch opportunities. The AFL mission architecture proposed here assumes maximum heritage from the 2009 Mars Science Laboratory (MSL). Candidate payload elements for this concept were identified from a set of recommendations put forth by the Astrobiology Field Laboratory Science Steering Group (AFL SSG) in 2004, for the express purpose of identifying overall rover mass and power requirements for such a mission. The conceptual payload includes a Precision Sample Handling and Processing System that would replace and augment the functionality and capabilities provided by the Sample Acquisition Sample Processing and Handling system that is currently part of the 2009 MSL platform.  相似文献   

9.
Hoehler TM  Westall F 《Astrobiology》2010,10(9):859-867
The Mars Exploration Program Analysis Group (MEPAG) maintains a standing document that articulates scientific community goals, objectives, and priorities for mission-enabled Mars science. Each of the goals articulated within the document is periodically revisited and updated. The astrobiology-related Goal One, "Determine if life ever arose on Mars," has recently undergone such revision. The finalized revision, which appears in the version of the MEPAG Goals Document posted on September 24, 2010, is presented here.  相似文献   

10.
John D. Rummel   《Acta Astronautica》2009,64(11-12):1293-1297
“Special regions” on Mars are areas designated in the COSPAR planetary protection policy as areas that may support Earth microbes inadvertently introduced to Mars, or that may have a high probability of supporting indigenous martian life. Since absolutely nothing is known about martian life, the operational definition of a special region is a place that may allow the formation and maintenance of liquid water, on or under the surface of Mars. This paper will review the special-regions concept, the implications of recent recommendations on avoiding them, and the work of the Mars science community in providing an operational definition of those areas on Mars that are “non-special.”  相似文献   

11.
We discuss the results of measurements made with the Planetary Fourier Spectrometer (PFS) onboard the Mars Express spacecraft. The data were obtained in the beginning of the mission and correspond to the end of summer in the southern hemisphere of Mars (L s ~ 340°). Three orbits are considered, two of which passed through volcanoes Olympus and Ascraeus Mons (the height above the surface is about +20 km), while the third orbit intersects lowland Hellas (?7 km). The influence of the relief on the properties of the aerosol observed is demonstrated: clouds of water ice with a visual optical thickness of 0.1–0.5 were observed above volcanoes, while only dust was found during the observations (close in time) along the orbit passing through Hellas in low and middle latitudes. This dust is homogeneously mixed with gas and has a reduced optical thickness of 0.25±0.05 (at v = 1100 cm?1). In addition to orographic clouds, ice clouds were observed in this season in the northern polar region. The clouds seen in the images obtained simultaneously by the mapping spectrometer OMEGA confirm the PFS results. Temperature inversion is discovered in the north polar hood below the level 1 mbar with a temperature maximum at about 0.6 mbar. This inversion is associated with descending movements in the Hadley cell.  相似文献   

12.
The first European mission to Venus (Venus Express) is described. It is based on a repeated use of the Mars Express design with minor modifications dictated in the main by more severe thermal environment at Venus. The main scientific task of the mission is global exploration of the Venusian atmosphere, circumplanetary plasma, and the planet surface from an orbiting spacecraft. The Venus Express payload includes seven instruments, five of which are inherited from the missions Mars Express and Rosetta. Two instruments were specially designed for Venus Express. The advantages of Venus Express in comparison with previous missions are in using advanced instrumentation and methods of remote sounding, as well as a spacecraft with a broad spectrum of capabilities of orbital observations.  相似文献   

13.
Venus remains one of the great unexplored planets in our solar system, with key questions remaining on the evolution of its atmosphere and climate, its volatile cycles, and the thermal and magmatic evolution of its surface. One potential approach toward answering these questions is to fly a reconnaissance mission that uses a multi-mode radar in a near-circular, low-altitude orbit of ∼400 km and 60–70° inclination. This type of mission profile results in a total mission delta-V of ∼4.4 km/s. Aerobraking could provide a significant portion, potentially up to half, of this energy transfer, thereby permitting more mass to be allocated to the spacecraft and science payload or facilitating the use of smaller, cheaper launch vehicles.Aerobraking at Venus also provides additional science benefits through the measurement of upper atmospheric density (recovered from accelerometer data) and temperature values, especially near the terminator where temperature changes are abrupt and constant pressure levels drop dramatically in altitude from day to night.Scientifically rich, Venus is also an ideal location for implementing aerobraking techniques. Its thick lower atmosphere and slow planet rotation result in relatively more predictable atmospheric densities than Mars. The upper atmosphere (aerobraking altitudes) of Venus has a density variation of 8% compared to Mars' 30% variability. In general, most aerobraking missions try to minimize the duration of the aerobraking phase to keep costs down. These short phases have limited margin to account for contingencies. It is the stable and predictive nature of Venus' atmosphere that provides safer aerobraking opportunities.The nature of aerobraking at Venus provides ideal opportunities to demonstrate aerobraking enhancements and techniques yet to be used at Mars, such as flying a temperature corridor (versus a heat-rate corridor) and using a thermal-response surface algorithm and autonomous aerobraking, shifting many daily ground activities to onboard the spacecraft. A defined aerobraking temperature corridor, based on spacecraft component maximum temperatures, can be employed on a spacecraft specifically designed for aerobraking, and will predict subsequent aerobraking orbits and prescribe apoapsis propulsive maneuvers to maintain the spacecraft within its specified temperature limits. A spacecraft specifically designed for aerobraking in the Venus environment can provide a cost-effective platform for achieving these expanded science and technology goals.This paper discusses the scientific merits of a low-altitude, near-circular orbit at Venus, highlights the differences in aerobraking at Venus versus Mars, and presents design data using a flight system specifically designed for an aerobraking mission at Venus. Using aerobraking to achieve a low altitude orbit at Venus may pave the way for various technology demonstrations, such as autonomous aerobraking techniques and/or new science measurements like a multi-mode, synthetic aperture radar capable of altimetry and radiometry with performance that is significantly more capable than Magellan.  相似文献   

14.
Endospores of Bacillus subtilis HA101 were applied to a simulated Mars Exploration Rover (MER) wheel and exposed to Mars-normal UV irradiation for 1, 3, or 6 h. The experiment was designed to simulate a contaminated rover wheel sitting on its landing platform before rolling off onto the martian terrain, as was encountered during the Spirit and Opportunity missions. When exposed to 1 h of Mars UV, a reduction of 81% of viable endospores was observed compared to the non-UV irradiated controls. When exposed for 3 or 6 h, reductions of 94.6% and 96.6%, respectively, were observed compared to controls. In a second experiment, the contaminated rover wheel was rolled over a bed of heat-sterilized Mars analog soil; then the analog soil was exposed to full martian conditions of UV irradiation, low pressure (6.9 mbar), low temperature (-10°C), and an anaerobic CO(2) martian atmosphere for 24 h to determine whether endospores of B. subtilis on the contaminated rover wheel could be transferred to the surface of the analog soil and survive martian conditions. The experiment simulated conditions in which a rover wheel might come into contact with martian regolith immediately after landing, such as is designed for the upcoming Mars Science Laboratory (MSL) rover. The contaminated rover wheel transferred viable endospores of B. subtilis to the Mars analog soil, as demonstrated by 31.7% of samples showing positive growth. However, when contaminated soil samples were exposed to full martian conditions for 24 h, only 16.7% of samples exhibited positive growth-a 50% reduction in the number of soil samples positive for the transferred viable endospores.  相似文献   

15.
NASA's newly restructured Mars Exploration Program (MEP) is finally on the way to Mars with the successful April 7 launch of the 2001 Mars Odyssey Orbiter. In addition, the announcement by the Bush Administration that the exploration of Mars will be a priority within NASA's Office of Space Science further cements the first decade of the new millennium as one of the major thrusts to understand the "new" Mars. Over the course of the past year and a half, an integrated team of managers, scientists, and engineers has crafted a revamped MEP to respond to the scientific as well as management and resource challenges associated with deep space exploration of the Red Planet. This article describes the new program from the perspective of its guiding philosophies, major events, and scientific strategy. It is intended to serve as a roadmap to the next 10-15 years of Mars exploration from the NASA viewpoint. [For further details, see the Mars Exploration Program web site (URL): http://mars.jpl.nasa.gov]. The new MEP will certainly evolve in response to discoveries, to successes, and potentially to setbacks as well. However, the design of the restructured strategy is attentive to risks, and a major attempt to instill resiliency in the program has been adopted. Mars beckons, and the next decade of exploration should provide the impetus for a follow-on decade in which multiple sample returns and other major program directions are executed. Ultimately the vision to consider the first human scientific expeditions to the Red Planet will be enabled. By the end of the first decade of this program, we may know where and how to look for the elusive clues associated with a possible martian biological record, if any was every preserved, even if only as "chemical fossils."  相似文献   

16.
Lett JT  Lee AC  Cox AB 《Acta Astronautica》1994,32(11):739-748
Recognition of the human risks from radiation exposure during manned missions in deep space has been fostered by international co-operation; interagency collaboration is facilitating their evaluation. Further co-operation can lead, perhaps by the end of this decade, to an evaluation of one of the three major risks, namely radiation cataractogenesis, sufficient for use in the planning of the manned mission to Mars.  相似文献   

17.
《Acta Astronautica》2009,64(11-12):1337-1342
With the vast experience gained by Aerospace Community in the last five decades, the natural future course of action will be to expand Space Exploration. Our understanding of Moon is relatively better with a number of unmanned satellite missions carried out by the leading Space Agencies and manned missions to Moon by USA. Also a number of unmanned satellite missions and surface rover missions were carried out to Mars by those Space agencies generating many new details about Mars. While the future exploration efforts by global community will also be centered obviously on Moon and Mars, it is noteworthy that already NASA had declared its plans for establishing a Surface Base on Moon and developing the technical infrastructure required. Surface Bases on Moon and Mars give rise to a number of strategic, technical and ethical issues both in the process of development, and in the process of establishing the bases. The strategic issues related to Moon and Mars Surface Bases will be centered around development of enabling technologies, cost of the missions, and international cooperation. The obvious path for tackling both the technological development and cost issues will be through innovative and new means of international cooperation. International cooperation can take many forms like—all capable players joining a leader, or sharing of tasks at system level, or all players having their independent programmes with agreed common interfaces of the items being taken to and left on the surface of Moon/Mars. Each model has its own unique features. Among the technical issues, the first one is that of the Mission Objectives—why Surface Bases have to be developed and what will be the activity of crew on Surface Bases? Surface Bases have to meet mainly the issues on long term survivability of humans on the Mars/Moon with their specific atmosphere, gravity and surface characteristics. Moon offers excellent advantages for astronomy while posing difficulties with respect to solar power utilization and extreme temperature variations. Hence the technical challenges depend on a number of factors starting from mission requirements. Obviously the most important technical challenge to be addressed will be in the areas of crew safety, crew survivability, adequate provision to overcome contingencies, and in-situ resource utilization. Towards this, new innovations will be developed in areas such as specialized space suits, rovers, power and communication systems, and ascent and descent modules. The biggest ethical issue is whether humankind from Earth is targeting ‘habitation’ or ‘colonization’ of Moon/Mars. The next question will be whether the in-situ resource exploitation will be only for carrying out further missions to other planets from Moon/Mars or for utilization on Earth. The third ethical issue will be the long term impact of pollution on Moon/Mars due to technologies employed for power generation and other logistics on Surfaces. The paper elaborates the views of the authors on the strategic, technical and ethical aspects of establishing Surface Bases and colonies on Moon and Mars. The underlying assumptions and gray areas under each aspect will be explained with the resulting long-term implications.  相似文献   

18.
Phoenix--the first Mars Scout mission   总被引:2,自引:0,他引:2  
Shotwell R 《Acta Astronautica》2005,57(2-8):121-134
NASA has initiated the first of a new series of missions to augment the current Mars Program. In addition to the systematic series of planned, directed missions currently comprising the Mars Program plan, NASA has started a series of Mars Scout missions that are low cost, price fixed, Principal [correction of Principle] Investigator-led projects. These missions are intended to provide an avenue for rapid response to discoveries made as a result of the primary Mars missions, as well as allow more risky technologies and approaches to be applied in the investigation of Mars. The first in this new series is the Phoenix mission which was selected as part of a highly competitive process. Phoenix will use the Mars 2001 Lander that was discontinued in 2000 and apply a new set of science objectives and mission objectives and will validate this soft lander architecture for future applications. This paper will provide an overview of both the Program and the Project.  相似文献   

19.
Accurate estimations of the health risks to astronauts due to space radiation exposure are necessary for future lunar and Mars missions. Space radiation consists of solar particle events (SPEs), comprised largely of medium energy protons (less than several hundred MeV); and galactic cosmic rays (GCR), which include high-energy protons and heavy ions. While the frequency distribution of SPEs depends strongly upon the phase within the solar activity cycle, the individual SPE occurrences themselves are random in nature. A solar modulation model has been developed for the temporal characterization of the GCR environment, which is represented by the deceleration potential, ?. The risk of radiation exposure to astronauts as well as to hardware from SPEs during extra-vehicular activities (EVAs) or in lightly shielded vehicles is a major concern for radiation protection. To support the probabilistic risk assessment for EVAs, which could be up to 15% of crew time2 on lunar missions, we estimated the probability of SPE occurrence as a function of solar cycle phase using a non-homogeneous Poisson model [1] to fit the historical database of measurements of protons with energy>30 MeV, Φ30. The resultant organ doses and dose equivalents, as well as effective whole body doses, for acute and cancer risk estimations are analyzed for a conceptual habitat module and for a lunar rover during space missions of defined durations. This probabilistic approach to radiation risk assessment from SPE and GCR is in support of mission design and operational planning for future manned space exploration missions.  相似文献   

20.
火星探测极远的通信距离以及行星遮挡,使得探测车与地面站的通信需要构建火星临近空间网络传输信息。为保证数据传输的可靠性并提高传输效率,重点研究基于分布式前向纠删编码的多个火星探测车通过中继轨道器向地面站传输的场景。考虑探测节点的周期性加入和退出的特性,设计了源节点使用弱鲁棒孤波LT码,中继随机转发/异或的中继随机决策编码方案,并推导了转发概率的理论最优值。仿真验证了新方案与已有的分布式喷泉方案相比,降低了约50%的信源编码开销,并通过复杂度与译码冗余的折衷,达到了99.9%的译码成功率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号