首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
X-ray spectra of the BL Lac type object Mkn 421 and several Seyfert type 1 galaxies; IIIZw2, MCG8-11-11 and NGC 4151, have been obtained using the Leicester University instrument on board the Ariel-6 satellite. The Mkn 421 spectrum is best represented by two powerlaw components, the soft component having 3.4 whilst the hard flux has 1.0. In MCG8-11-11 there is clear evidence for spectral variability between our observation in late 1979 and that of HEAO-1/A2 in 1977. The Ariel-6 spectrum of MCG8-11-11 can be fitted by a powerlaw of index 2.1 together with an iron line at 6.2 keV with an equivalent width of 1.6 keV. The first X-ray spectrum of IIIZw2 is also presented, fitting with a powerlaw we find an index of 1.7. With the exception of NGC 4151 there is no evidence for a significant column of cool material along the line of sight.  相似文献   

2.
High energy -rays from individual giant molecular clouds contain unique information about the hidden sites of acceleration of galactic cosmic rays, and provide a feasible method for study of propagation of cosmic rays in the galactic disk on scales 100 pc. I discuss the spectral features of 0-decay -radiation from clouds/targets located in proximity of relatively young proton accelerators, and speculate that such `accelerator+target systems in our Galaxy can be responsible for a subset of unidentified EGRET sources. Also, I argue that the recent observations of high energy -rays from the Orion complex contain evidence that the level of the `sea of galactic cosmic rays may differ significantly from the flux and the spectrum of local (directly detected) particles.  相似文献   

3.
The purpose of this work is to study the various -ray-production mechanisms in solar flares and to calculate the flux, the spectrum, and the decay curves of radiation. Using the continuity equation and taking into account the energy losses for solar-flare-accelerated particles, we obtain the time-dependent particle distribution and thus the time behavior of the resulting rays. The important processes for producing rays in solar flares are found to be nonthermal electron bremsstrahlung, decay of neutral mesons, positron annihilation, neutron capture, and decay of excited nuclei. The results are applied to several known solar flares. For a large flare such as the class 3+ on February 23, 1956, continuous rays with energies up to 100 MeV from electron bremsstrahlung and neutral meson decays are observable at the orbit of the Earth by existing -ray detectors. Line rays from positron annihilation (0.51 MeV), neutron capture (2.23 MeV), and deexcitation of excited nuclei O16 (6.14 and 7.12 MeV) and C12 (4.43 MeV) are particularly strong and well above the continuous -ray background due to electron bremsstrahlung. These lines can be detected at the Earth.NASA-NRC Resident Research Associate.  相似文献   

4.
A brief review of various theoretical approaches to model accretion disks is presented. Emphasis is given to models that determine self-consistently the structure of a disk together with the radiation field. It is argued that a proper treatment of the vertical structure is essential for calculating theoretical spectra to be compared with observations. In particular, it is shown that hot layers above an accretion disk (sometimes called disk chromospheres or coronae), whose presence is indicated by recent UV observations of strong emission lines of highly ionized species, may be explained using simple energy balance arguments.1987–88 JILA Visiting Fellow.This work was in part supported by a NASA grant ADP U-003-88 (Plavec and Hubeny). I also wish to thank the organizers of the IAU Colloquium 107 for the travel grant which enabled me to attend the meeting.  相似文献   

5.
Hogan  Craig J. 《Space Science Reviews》1998,84(1-2):127-136
Estimates of the deuterium abundance in quasar absorbers are reviewed, including a brief account of incorrect claims published by the author and a brief review of the problem of hydrogen contamination. It is concluded that the primordial abundance may be universal with a value (D/H)P 10-4, within about a factor of two, corresponding to Bh 0.7 2 0.0fs2 or 10 2.7 in the Standard Big Bang. This agrees with current limits on primordial helium, YP 0.243, which are shown to be surprisingly insensitive to models of stellar enrichment. It also agrees with a tabulated sum of the total density of baryons in observed components. Much lower primordial deuterium ( 2 × 10-5) is also possible but disagrees with currently estimated helium abundances; the larger baryon density in this case fits better with current models of the Lyman- forest but requires the bulk of the baryons to be in some currently uncounted form.  相似文献   

6.
We present helium and CNO isotopic yields for massive mass-losing stars in the initial mass range 15M M i 50M . We investigate their dependence on assumptions about mass loss rates, internal mixing processes, and metallicity, and specify the contributions from stellar winds and from supernova ejecta.  相似文献   

7.
I summarize the results of recent research on the structure and particle acceleration properties of relativistic shock waves in which the magnetic field is transverse to the flow direction in the upstream medium, and whose composition is primarily electrons and positrons with an admixture of heavy ions. Shocks which contain heavy ions that are a minority constituent by number but which carry most of the energy density in the upstream medium put 20% of the flow energy into a nonthermal population of pairs downstream, whose distribution in energy space is N(E) E -2, where N(E)dE is the number of particles with energy between E and E+dE. Synchrotron maser activity in the shock front, stimulated by the quasi-coherent gyration of the whole particle population as the plasma flowing into the shock reflects from the magnetic field in the shock front, provides the mechanism of thermalization and non-thermal particle acceleration. The maximum energy achievable by the pairs is ± m ± c 2 = m i c 2 1/Z i, where 1 is the Lorentz factor of the upstream flow and Z i is the atomic number of the ions. The shock's spatial structure contains a series of overshoots in the magnetic field, regions where the gyrating heavy ions compress the magnetic field to levels in excess of the eventual downstream value. These overshoots provide a new interpretation of the structure of the inner regions of the Crab Nebula, in particular of the wisps, surface brightness enhancements near the pulsar. The wisps appear brighter because the small Larmor radius pairs are compressed and radiate more efficiently in the regions of more intense magnetic field. This interpretation suggests that the structure of the shock terminating the pulsar's wind in the Crab Nebula is spatially resolved, and allows one to measure 1 4 × 106, the upstream magnetic field B 1 to be 3 × 10-5 Gauss, as well as to show that the total ion flow is 3 × 1034 elementary charges/sec, in good agreement with the total current flow predicted by the early Goldreich and Julian (1969) model. The total pair outflow is shown to be about 5 × 1037 pairs per second, in good agreement with the particle flux required to explain the nebular X—ray source.The energetics of particle acceleration within the magnetospheres of rotation powered pulsars and the consequences for pulsed gamma ray emission are also briefly discussed. The gamma ray luminosity above 100 MeV is shown to scale in proportion to R 1/2 , as is in accord with some of the simplest ideas about polar cap models. Models based on acceleration in the outer magnetosphere are also briefly discussed.  相似文献   

8.
The interaction between network magnetic fields and emerging intranetwork fields may lead to magnetic reconnection and microflares, which generate fast shocks with an Alfvén Mach number M A<2. Protons and less abundant ions in the solar corona are then heated and accelerated by fast shocks. Our study of shock heating shows that (a) the nearly nondeflection of ion motion across the shock ramp leads to a large perpendicular thermal velocity (v th), which is an increasing function of the mass/charge ratio; (b) the heating by subcritical shocks with 1.1 MA 1.5 leads to a large temperature anisotropy with T/T 50 for O5+ ions and a mild anisotropy with T/T 1.2 for protons; (c) the large perpendicular thermal velocity of He++ and O5+ ions can be converted to the radial outflow velocity (u) in the divergent coronal field lines; and (d) the heating and acceleration by shocks with 1.1 MA 1.5 can lead to u(O5+) v th(O5+) 460 km s–1 for O5+ ions, u(He++) v th(He++) 360 km s–1 for He++ ions, and u(H+) v th(H+) 240 km s–1 for protons at r=3–4 R . Our results can explain recent SOHO observations of the heating and acceleration of protons and heavier ions in the solar corona.  相似文献   

9.
Recent studies suggest that when magnetohydrodynamic (MHD) turbulence is excited by stirring a plasma at large scales, the cascade of energy from large to small scales is anisotropic, in the sense that small-scale fluctuations satisfy the inequality k k , where k and k are, respectively, the components of a fluctuations wave vector and to the background magnetic field. Such anisotropic fluctuations are very inefficient at scattering cosmic rays. Results based on the quasilinear approximation for scattering of cosmic rays by anisotropic MHD turbulence are presented and explained. The important role played by molecular-cloud magnetic mirrors in confining and isotropizing cosmic rays when scattering is weak is also discussed.  相似文献   

10.
The Voyager 1 and 2 spacecraft include instrumentation that makes comprehensive ion (E 28 keV) and electron (E 22 keV) measurements in several energy channels with good temporal, energy, and compositional resolution. Data collected over the past decade (1977–1988), including observations upstream and downstream of four planetary bow shocks (Earth, Jupiter, Saturn, Uranus) and numerous interplanetary shocks to 30 AU, are reviewed and analyzed in the context of the Fermi and shock drift acceleration (SDA) models. Principal findings upstream of planetary bow shocks include the simultaneous presence of ions and electrons, detection of tracer ions characteristic of the parent magnetosphere (O, S, O+), power-law energy spectra extending to 5 MeV, and large (up to 100:1) anisotropies. Results from interplanetary shocks include observation of acceleration to the highest energies ever seen in a shock ( 22 MeV for protons, 220 MeV for oxygen), the saturation in energy gain to 300 keV at quasi-parallel shocks, the observation of shock-accelerated relativistic electrons, and separation of high-energy (upstream) from low-energy (downstream) populations to within 1 particle gyroradius in a near-perpendicular shock. The overall results suggest that ions and electrons observed upstream of planetary bow shocks have their source inside the parent magnetosphere, with first order Fermi acceleration playing a secondary role at best. Further, that quasi-perpendicular interplanetary shocks accelerate ions and electrons most efficiently to high energies through the shock-drift process. These findings suggest that great care must be exercised in the application of concepts developed for heliosphere shocks to cosmic ray acceleration through shocks at supernova remnants.  相似文献   

11.
During a balloon flight of the MISO telescope on the 30th September 1979, the Seyfert galaxies NGC 4151 and MGC 8-11-11 were studied in the hard X-ray range (EX > 20 keV) and low-energy -ray range up to 19 MeV. An emission at the 4.5 level above 20 keV (4 above 260 keV) was detected in the direction of NGC 4151. -ray emission at the 3.9 level above 90 keV was also observed from the direction of MCG 8-11-11. The emission photon spectrum shows a high-energy cutoff at about 3 MeV. A large amount of the observed low-energy -ray diffuse background could be produced by a few percent of the X-ray emitting Seyfert galaxies having a -ray luminosity comparable to that observed from the regions of NGC 4151 or MCG 8-11-11.  相似文献   

12.
In this paper we discuss theoretical expressions, determining the difference of Doppler shifts of various coherent radiowave frequencies emitted by a radiator moving in the ionosphere or interplanetary medium. The rotating Doppler effect (Faraday effect) caused by the Doppler shifts ±H of the ordinary and extraordinary waves is also considered. In a three-dimensional inhomogeneous ionosphere, stationary in time (N/t = 0), is determined in the general case, by an equation with three variables. The equation for proper depends only on the local value of the electron concentration N c around the radiator and on integral values, determining, by means of additional calculations, the angle of refraction or its components, the horizontal gradients of electron concentration N/x and N/y, and in some cases, the integral electron concentration 0 zcN dz. We describe the analysis of the measurements, made with the satellites Cosmos I, II and partially XI, assuming that N/t = N/y = 0, with a two variables equation. The expected errors are considered. The results coincide well for different points (Moscow, The Crimea, Sverdlovsk) and thus agree with the measurements of H and with height-frequency ionospheric characteristics. The curve giving electron concentration versus height N (z) in the outer ionosphere (above the maximum of F2), shows a new maximum higher than the main maximum of the ionosphere N MF2 at 120–140 km. At this maximum the value of N (z) is (0.9–0.95) N MF2. The new data on the large-scale horizontal inhomogeneities of the ionosphere, exceed the previous ones by about a factor 10. By means of the irregular variations of the spectrum W() of the inhomogenous formation is determined. Three unknown constant maxima with values 16 to 18 km, 28 to 32 km and 100 to 120 km are found. The spectrum W () mainly characterizes the local properties of the ionosphere along the orbit of the satellite.  相似文献   

13.
Summary Using values of d, min, and max that Van Riper (1978) has found most promising for a hydrodynamic envelope ejection, we have shown that even a small amount of rotation in the initial core can stop its collapse before nuclear densities are reached. We expected i > 0.02 to produce significant deviations from a spherically symmetric collapse, but have found that i as much as ten times smaller than this will not allow the core to reach densities as high as in the spherical collapse. In no case, however, does the core flatten very much, nor does the value of become very large. Low final 's preclude the formation of an axisymmetric torus. They also indicate that deformation of an iron core into a triaxial configuration or fragmentation of the core during its collapse is an extremely unlikely event. (Note: Classically, must exceed 0.27 before a dynamic instability to non-axisymmetric perturbations is encountered.)The small degree of flattening of the core also suggests that the reduced moment of inertia I of the core will always be relatively small in magnitude and hence that the third time derivative of I, which is proportional to the energy emitted in gravity wave radiation, will not be very significant. Numerically calculated estimates of I- during some of these model evolutions supports this suspicion. If the min and used here are found to be realistic values after the detailed physics of the core collapse is well understood, it is clear that gravitational radiation from a core collapse will be difficult to measure.Finally, we should point out that it is the relatively large values of Ymin (near 4/3) combined with values of d near unity that (a) prevented the core from flattening significantly in these models and (b) prevented the core from reaching high configurations. If realistic values of either one (or both) of these parameters are found to be much smaller in more complete models of the core collapse, then the core will have to become flatter (and denser) before pressure gradients will support it along the rotation axis. All of the conclusions drawn here would be modified accordingly under those circumstances. It should also be noted that in general relativistic models, the critical for spherical collapse is somewhat larger than 4/3 (Van Riper, 1979). Therefore, we predict that when fully general relativistic core collapses are performed including rotation, a given choice of min and i will produce a slightly flatter and slightly denser core than the corresponding model that has been presented here.  相似文献   

14.
There is evidence for temperature fluctuations in Planetary Nebulae and in some Galactic H II regions. If such fluctuations occur in the low metallicity, extragalactic H II regions used to probe the primordial helium abundance, the derived 4He mass fraction, YP, could be systematically different from the true primordial value. Although this effect could be large, there are no data which allow us to estimate the size of the temperature fluctuations for the extragalactic H II regions. Therefore, we have explored this effect via Monte Carlo simulations of the data in which the abundances derived from a fiducial data set are modified by T chosen from a distribution with 0 T Tmax where Tmax is varied from 500 K to 4000 K.  相似文献   

15.
Since the baryon-to-photon ratio 10 is in some doubt at present, we ignore the constraints on 10 from big bang nucleosynthesis (BBN) and fit the three key cosmological parameters (h, M, 10) to four other observational constraints: Hubble parameter (ho), age of the universe (to), cluster gas (baryon) fraction (fo fGh3/2), and effective shape parameter (o). We consider open and flat CDM models and flat CDM models, testing goodness of fit and drawing confidence regions by the 2 method. CDM models with M = 1 (SCDM models) are accepted only because we allow a large error on ho, permitting h < 0.5. Open CDM models are accepted only for M 0.4. CDM models give similar results. In all of these models, large 10 ( 6) is favored strongly over small 10 ( 2), supporting reports of low deuterium abundances on some QSO lines of sight, and suggesting that observational determinations of primordial 4He may be contaminated by systematic errors. Only if we drop the crucial o constraint are much lower values of M and 10 permitted.  相似文献   

16.
Baryons observed in Ly absorbers contribute to the density parameter 0 by bar 0.06 in close agreement with the value of 0.06 from primordial nucleosynthesis (H0=55 km s-1 Mpc-1, = 0 assumed throughout). A number of methods are known to measure 0 from density fluctuations; bound structures tend to yield lower values (m 0.2-0.4), field galaxies over large scales higher, but still undercritical values (m 0.6 ± 0.2). The best compromise value is 0 0.5, but the present methods are blind to diffusely distributed, exotic matter which still could make 0 = 1. A satisfactory solution of 0 (and ) will only come from a fundamental cosmological test (e.g. the Hubble diagram of [evolution-corrected] supernovae type Ia) in combination with the CMB fluctuation spectrum.  相似文献   

17.
This is an observational review, with an emphasis on photometric data and their interpretation. Two lists are presented, one containing Cephei stars, and the other, Cephei suspects. These lists then serve as a basis for discussing such topics as the location of Cephei stars in the observational and theoretical H-R diagrams, the evolutionary state of these stars, the period-luminosity and period-luminosity-color relations, and observational identification of pulsation modes. The paper also includes references to recent work connected with the theoretical discovery that an opacity mechanism is responsible for the excitation of Cephei-star pulsations. Finally, observational programs for verifying the consequences of this discovery are suggested.Belgian Fund for Scientific Research (NFWO).  相似文献   

18.
This review focuses on the conditions for -ray line production in the most interesting astronomical objects, in light of the planned experiments: Gamma-1, GRO, Sigma, GRASP, and others. Among these objects are the Sun, the galactic center region, molecular and dust clouds, accreting and exploding stars.  相似文献   

19.
Methods are discussed for establishing the optical identification of X ray sources in the medium and deep X-ray surveys of the Einstein Observatory. Of the 63 X-ray sources with a statistical significance of 5 in the medium survey (Maccacaro et al. 1981), optical identification work is summarized for 51, of which identifications have been made with 30 active galactic nuclei. The optical properties of some of these X-ray selected objects are briefly discussed.The Einstein deep survey of Pavo (Griffiths et al. 1981) is used to illustrate the problems and methods used for securing optical identifications for X-ray sources in the deep survey fields. Identifications have been made with 4 QSOs at the bright end of the optical candidate distribution (together with 3 G stars) and it is shown that a further 7 fainter objects are also likely to be QSOs.  相似文献   

20.
We review aspects of anomalous cosmic rays (ACRs) that bear on the solar modulation of energetic particles in the heliosphere. We show that the latitudinal and radial gradients of these particles exhibit a 22-year periodicity in concert with the reversal of the Sun's magnetic field. The power-law index of the low energy portion of the energy spectrum of ACRs at the shock in 1996 appears to be -1.3, suggesting that the strength of the solar wind termination shock at the helioequatorial plane is relatively weak, with s 2.8. The rigidity dependence of the perpendicular interplanetary mean free path in the outer heliosphere for particles with rigidities between 0.2 and 0.7 GV varies approximately as R2, where R is particle rigidity. There is evidence that ACR oxygen is primarily multiply charged above 20 MeV/nuc and primarily singly-charged below 16 MeV/nuc. The location of the termination shock was at 65 AU in 1987 and 85 AU in 1994.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号