首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
2.
3.
4.
5.
6.
7.
In 1803, President Thomas Jefferson set fourth a military expedition led by Captains M. Lewis and W. Clark (Lewis and Clark Expedition) on an exploration that would become an everlasting part of US national history and pride. Looking back at the events of this exploration, there are many similarities to the experiences future human space explorers will face as we look to colonize the Moon and travel to Mars and beyond (NASA Vision for Space Exploration, 2004):
The Lewis and Clark Expedition lasted almost three years and involved a crew of 43 men traveling up the Missouri River to explore the unknown lands and a possible water route to the Pacific Ocean;  相似文献   

8.
The study addresses interaction of bacteria and phages in the host–parasite system in batch and continuous cultures. The study system consists of the auxotrophic strain of BrevibacteriumBrevibacterium sp. 22L – and the bacteriophage of Brevibacterium sp., isolated from the soil by the enrichment method.
1.
Closed system. In the investigation of the relationship between the time of bacterial lysis and multiplicity of phage infection it has been found that at a lower phage amount per cell it takes a longer time for the lysis of the culture to become discernible. Another important factor determining cytolysis in liquid medium is the physiological state of bacterial population. Specific growth rate of bacteria at the moment of phage infection has been chosen as an indicator of the physiological state of bacteria. It has been shown that the shortest latent period and the largest output of the phage are observed during the logarithmic growth phase of bacteria grown under favorable nutrient conditions. In the stationary phase, bacterial cells become “a bad host” for the phage, whose reproduction rate decreases, and the lysis either slows down significantly or does not occur at all.  相似文献   

9.
10.
Recent progress in the diagnosis of flare fast particles is critically discussed with the main emphasis on high resolution hard X-ray (HXR) data from RHESSI and coordinated data from other instruments. Spectacular new photon data findings are highlighted as are advances in theoretical aspects of their use as fast particle diagnostics, and some important comparisons made with interplanetary particle data. More specifically the following topics are addressed:
  • (a)RHESSI data on HXR (electron) versus gamma-ray line (ion) source locations.
  • (b)RHESSI hard X-ray source spatial structure in relation to theoretical models and loop density structure.
  • (c)Energy budget of flare electrons and the Neupert effect.
  • (d)Spectral deconvolution methods including blind target testing and results for RHESSI HXR spectra, including the reality and implications of dips inferred in electron spectra.
  • (e)The relation between flare in situ and interplanetary particle data.
  相似文献   

11.
Multi-spacecraft tracing of the high latitude magnetopause (MP) and boundary layers and Interball-1 statistics indicate that:
1. (a) The turbulent boundary layer (TBL) is a persistent feature in the region of the cusp and ‘sash’, a noticeable part of the disturbances weakly depends on the interplanetary magnetic field By component; TBL is a major site for magnetosheath (MSH) plasma penetration inside the magnetosphere through percolation and local reconnection.
2. (b) The TBL disturbances are mainly inherent with the characteristic kinked double-slope spectra and, most probably, 3-wave cascading. The bi-spectral phase coupling indicates self-organization of the TBL as the entire region with features of the non-equilibrium multi-scale and multi-phase system in the near-critical state.
3. (c) We've found the different outer cusp topologies in summer/winter periods: the summer cusp throat is open for the decelerated MSH flows, the winter one is closed by the distant MP with a large-scale (several Re) diamagnetic ‘plasma ball’ inside the MP; the ‘ball’ is filled from MSH through patchy merging rather than large-scale reconnection.
4. (d) A mechanism for the energy release and mass inflow is the local TBL reconnection, which operates at the larger scales for the average anti-parallel fields and at the smaller scales for the nonlinear fluctuating fields; the latter is operative throughout the TBL. The remote from TBL anti-parallel reconnection seems to happen independently.

References

Chen, J., Fritz, T.A., Sheldon, R.B., Spencer, H.E., Spjeldvik, W.N. et al., 1997. Temporary confined population in the polar cap during the August 27, 1996 geomagnetic field distortion period. Geophys. Res. Lett. 24, p. 1447. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus (51)
Chen, J. and Fritz, T.A., 1998. Correlation of cusp MeV helium with turbulent ULF power spectra and its implications. Geophys. Res. Lett. 25, p. 4113. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus (34)
Consolini, G. and Lui, A.T., 2000. Symmetry breaking and nonlinear wave-wave interaction in current disruption: possible evidence for a phase transition. In: Magnetospheric Current SystemsGeophysical Monograph 118, American Geophysical Union, Washington D.C., pp. 395–401.
Dubinin, E., Skalsky, A., Song, P., Savin, S., Kozyra, J. et al., 2001. Polar-Interball coordinated observations of plasma characteristics in the region of the northern and southern distant cusps. J. Geophys. Res. accepted .
Fedorov, A., Dubinin, E., Song, P., Budnick, E., Larson, P. and Sauvaud, J.A., 2000. Characteristics of the exterior cusp for steady southward IMF: Interball observations. J. Geophys. Res. 105, pp. 15,945–15,957.
Fritz, T.A., Chen, J. and Sheldon, R.B., 2000. The role of the cusp as a source for magnetospheric particles: a new paradigm?. Adv. Space Res. 25, pp. 1445–1457. Article | PDF (871 K) | View Record in Scopus | Cited By in Scopus (18)
Haerendel, G. and Paschmann, G., 1975. Entry of solar wind plasma into the magnetosphere. In: Hultqvist, B. and Stenflo, L., Editors, 1975. Physics of the Hot Plasma in the Magnetosphere, Plenum, NY, p. 23.
Haerendel, G., 1978. Microscopic plasma processes related to reconnection. J. Atmos. Terr. Phys. 40, pp. 343–353. Abstract | PDF (1141 K) | View Record in Scopus | Cited By in Scopus (27)
Klimov, S. et al., 1997. ASPI Experiment: Measurements of Fields and Waves Onboard the INTERBALL-1 Spacecraft. Ann. Geophys. 15, pp. 514–527. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus (88)
Kuznetsova, M.M. and Zelenyi, L.M., 1990. The theory of FTE: Stochastic percolation model. In: Russell, C.T., Priest, E.R. and Lee, L.C., Editors, 1990. Physics of Magnetic Flux RopesAmerican Geophysical Union, pp. 473–488.
La Belle-Hamer, A.L., Otto, A. and Lee, L.C., 1995. Magnetic reconnection in the presence of sheared flow and density asymmetry: application to the Earth's magnetopause. J. Geophys. Res. 100, pp. 11,875–11,889.
Lagoutte, D., Lefeuvre, F. and Hanasz, J., 1989. Application of bi-coherence analysis in study of wave interactions in space plasma. J. Geophys. Res. 94, p. 435. Full Text via CrossRef
Maynard, N.C., Savin, S., Erickson, G.A., Kawano, H. et al., 2001. Observations of fluxes of magnetosheath origin by Polar and Interball at high latitudes behind the terminator-relationships to the magnetospheric “sash”. J. Geophys. Res. 104, pp. 6097–6122. Full Text via CrossRef
Merka, J., Safrankova, J., Nemecek, Z., Fedorov, A., Borodkova, N., Savin, S. and Skalsky, A., 2000. High altitude cusp: Interball observations. Adv. Space Res. 25, pp. 1425–1434. Article | PDF (915 K) | View Record in Scopus | Cited By in Scopus (22)
Onsager, T.G., Scudder, J., Lockwood, M. and Russell, C.T., 2001. Reconnection at the high latitude magnetopause during northward IMF conditions. J. Geophys. Res. 106, pp. 25,467–25,488.
Romanov, V., Savin, S., Klimov, S., Romanov, S., Yermolaev, Yu., Blecki, J. and Wronowski, R., 1999. Magnetic turbulence at the magnetopause: plasma penetration. J. Tech. Phys. (Poland) 40 1, pp. 329–332.
Safrankova, J., Nemecek, Z., Prech, L., Sauvaud, J.-A. and Wing, S., 2001. The structure of the magnetopause layers at magnetospheric flanks. In: Proceedings of COSPAR/ESA, Colloquium.
Sagdeev, R.Z. and Galeev, A.A., 1969. Nonlinear plasma theory. In: , Benjamin, White Plains, N.Y., p. 6.
Sandahl, I., Popielavska, B., Budnick, E.Yu., Fedorov, A., Savin, S., Safrankova, J. and Nemecek, Z., 2000. The cusp as seen from Interball. In: Proceedings of Cluster II Workshop. Multiscale/Multipoint Plasma MeasurementsESA/SP-499, Imperial College, London, pp. 39–45.
Savin, S.P., Romanov, S.A., Fedorov, A.O., Zelenyi, L., Klimov, S.I. et al., 1998. The cusp/magnetosheath interface on May 29, 1996: Interball-1 and Polar observations. Geoph. Res. Lett. 25, pp. 2963–2966. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus (23)
Savin, S.P., Borodkova, N.L., Budnik, E.Yu., Fedorov, A.O., Klimov, S.I. et al., 1998. Interball tail probe measurements in outer cusp and boundary layers. In: Horwitz, J.L., Gallagher, D.L. and Peterson, W.K., Editors, 1998. Geospace Mass and Energy Flow: Results from the International Solar-Terrestrial Physics ProgramGeophysical Monograph 104, American Geophysical Union, Washington, D.C., pp. 25–44.
Savin, S., Zelenyi, L., Budnik, L., Borodkova, N., Fedorov, A. et al., 1998. Manifestations of Boundary Layer Dynamics in Substrom Activity. Multi Spacecraft Study. In: Kokubun, S. and Kamide, Y., Editors, 1998. SUBSTORM-4, ‘Conf. on Substorms-4’Lake Hamana, Japan: March 9–13, 1998, , Terra Scientific Publ. Co., Tokyo, pp. 125–130.
Savin, S., Budnik, E., Nozdrachev, M., Romanov, V. et al., 1999. On the plasma turbulence and transport at the polar cusp outer border. Chekhoslovak J. Phys. 49 4a, pp. 679–693. View Record in Scopus | Cited By in Scopus (15)
Savin, S., Skalsky, A., Romanov, S., Budnick, E., Borodkova, N., Zelenyi, L. et al., 2000. Outer cusp boundary layer: summer/winter assymetry. In: Proceedings of Symposium ‘From solar corona through interplanetary space into magnetosphere and ionosphere’, Kyiv University, Kyiv, pp. 229–232.
Savin, S., Blecki, J., Pissarenko, N., Lutsenko, V., Kirpichev, I. et al., 2002. Accelerated particles from turbulent boundary layer. In: Proc. of Interball/COSPAR Colloquium ‘Acceleration And Heating In The Magnetosphere’ in press .
Savin, S., Maynard, N., Sandahl, I., Kawano, H., Russell, C.T., Romanov, S., Zelenyi, L. et al., 2002. Magnetosheath/Cusp Interface. Ann. Geophys. submitted .
Siscoe, G.L., Erickson, G.M., Sonnerup, B.U.Ö., Maynard, N.C., Siebert, K.D., Weimer, D.R. and White, W.W., 2001. Magnetospheric sash dependence on IMF direction. Geophys. Res. Lett. in press .
Spreiter, J.R. and Briggs, B.R., 1962. Theoretical determination of the form of the boundary of the solar corpuscular stream produced by interaction with the magnetic dipole field of the Earth. J. Geophys. Res. 67, pp. 37–51. Full Text via CrossRef
Zelenyi, L.M. and Milovanov, A.V., 1998. Multiscale magnetic structure of the distant tail: self-consistent fractal approach. In: New Perspectives on the Earth MagnetotailGeophys. Monograph 105, AGU, Washington DC, pp. 321–338.
  相似文献   

12.
This paper focuses on the autonomous orbit determination accuracy of Beidou MEO satellite using the onboard observations of the star sensors and infrared horizon sensor. A polynomial fitting method is proposed to calibrate the periodic error in the observation of the infrared horizon sensor, which will greatly influence the accuracy of autonomous orbit determination. Test results show that the periodic error can be eliminated using the polynomial fitting method. The User Range Error (URE) of Beidou MEO satellite is less than 2?km using the observations of the star sensors and infrared horizon sensor for autonomous orbit determination. The error of the Right Ascension of Ascending Node (RAAN) is less than 60?μrad and the observations of star sensors can be used as a spatial basis for Beidou MEO navigation constellation.  相似文献   

13.
The Antarctic Laboratory for Cosmic Rays (LARC, acronym for Laboratorio Antartico per i Raggi Cosmici or Laboratorio Antártico para Rayos Cósmicos) operates on King George Island (South Shetlands). Since January 1991 a standard 6NM-64 detector has been recording continuous cosmic ray measurements and several Ground-Level Enhancements have been registered. Here we describe the different phases performed in Italy for the realization of a 3NM-64_3He detector, which started its measurements during the Italian XXII Antarctic Summer Campaign. Data recorded during solar activity cycle 24 will furnish an useful research tool for the next Solar Extreme Events.  相似文献   

14.
Ionospheric sporadic E layer refers to localized thin irregularity with enhanced plasma density appearing in the height range of ionospheric E layer (~90–130?km). The much higher electron density in the sporadic E layer than the background ionosphere would cause sudden TEC enhancement in the occultation TEC profile. A wavelet decomposition and reconstruction method is applied to extract the TEC fluctuation in this paper, and then Smax index is defined to represent the intensity of the sudden TEC enhancement. Smax index is compared with sporadic E critical frequency (foEs) observed by the ionosonde. The results show a well linear correlation between them with mean correlation coefficient about 0.7. Thus, an empirical linear model is established to inverse the foEs. The monthly/hourly mean values and global distribution of sporadic E intensity and occurrence ratio are calculated using this method based on the COSMIC occultation data from 2007 to 2011. The statistical analysis results indicate that it is feasible to inverse the foEs based on the occultation TEC profile data and the inversion results can be applied to the long-term global variations of sporadic E investigations.  相似文献   

15.
16.
17.
We have developed a new approach towards a new database of the ionospheric parameter foF2. This parameter, being the frequency of the maximum of the ionospheric electronic density profile and its main modeller, is of great interest not only in atmospheric studies but also in the realm of radio propagation. The current databases, generated by CCIR (Committee Consultative for Ionospheric Radiowave propagation) and URSI (International Union of Radio Science), and used by the IRI (International Reference Ionosphere) model, are based on Fourier expansions and have been built in the 60s from the available ionosondes at that time. The main goal of this work is to upgrade the databases by using new available ionosonde data. To this end we used the IRI diurnal/spherical expansions to represent the foF2 variability, and computed its coefficients by means of a genetic algorithm (GA). In order to test the performance of the proposed methodology, we applied it to the South American region with data obtained by RAPEAS (Red Argentina para el Estudio de la Atmósfera Superior, i.e. Argentine Network for the Study of the Upper Atmosphere) during the years 1958–2009. The new GA coefficients provide a global better fit of the IRI model to the observed foF2 than the CCIR coefficients. Since the same formulae and the same number of coefficients were used, the overall integrity of IRI’s typical ionospheric feature representation was preserved. The best improvements with respect to CCIR are obtained at low solar activities, at large (in absolute value) modip latitudes, and at night-time. The new method is flexible in the sense that can be applied either globally or regionally. It is also very easy to recompute the coefficients when new data is available. The computation of a third set of coefficients corresponding to days of medium solar activity in order to avoid the interpolation between low and high activities is suggested. The same procedure as for foF2 can be perfomed to obtain the ionospheric parameter M(3000)F2.  相似文献   

18.
We use Indian temperature data of more than 100 years to study the influence of solar activity on climate. We study the Sun–climate relationship by averaging solar and climate data at various time scales; decadal, solar activity and solar magnetic cycles. We also consider the minimum and maximum values of sunspot number (SSN) during each solar cycle. This parameter SSN is correlated better with Indian temperature when these data are averaged over solar magnetic polarity epochs (SSN maximum to maximum). Our results indicate that the solar variability may still be contributing to ongoing climate change and suggest for more investigations.  相似文献   

19.
The balloon payload HEXE A) is designed to observe cosmic X-ray sources in the energy range 20–250 keV. Its detectors are ‘Phoswich’ scintillators with a total sensitive area of 2300 cm2 and a cooled Ge solid state detector with an area of 100 cm2 [1]. The instrument was flown successfully in 1980 and 1981 from Palestine, Texas.Here we describe the control of the instrument and guidance of the telescope as well as the method of data retrieval and real time analysis. These tasks are performed by a ground based minicomputer (HP 1000) and onboard microprocessors (M 6800) which are linked together by data and command telemetry.  相似文献   

20.
With the combination of two evolutionary algorithms EDA and DE, a new method of initial orbit determination for satellites based on ground-based too-short-arc is established. Compared with other algorithms, the proposed method focuses on the most densely populated region in the solution space rather than the individual with best fitness value. Both the global information and local information are well fused in the search of optimum. In the method (a,e,M) are treated as variables of the optimization, and the optimization procedure is carried out as a two-stage hierarchical optimization problem which has three variables for each stage. Kernel density estimation is applied to build the probability distribution model without any assumptions of the specified distribution, accompanied by handling semi-major axis and eccentricity as a pair of dependent variables in the construction of the probability for the correlation between them in the practice. Numerical experiments with real ground-based observations show that the proposed method is applicable to too-short-arc with even 3?s, and the result of bias in several kilometers can be achieved with 5 error added to angular measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号