首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
It is shown in this paper for the first time that the intensity of the daytime thermospheric O(1D) 630.0 nm airglow as measured by the ground-based dayglow photometer over Trivandrum (8.5°N; 77°E; dip lat. 0.5°N), a geomagnetic dip equatorial station, exhibit a direct correlation with the electron density at 180 km. This altitude is about ∼40 km lower than the believed centroid of the O(1D) 630.0 nm dayglow emission i.e. 220 km. This observation is contrary to the understanding of the behavior of O(1D) 630.0 nm dayglow over equatorial/low latitudes. Over these latitudes, the variations of the measured intensity of O(1D) 630.0 nm dayglow are known to be associated with the changes in the electron density at altitudes around 220 km, the centroid of this emission. In this context, the present results indicating the lowering of the peak altitude of O(1D) 630.0 nm emission from ∼220 to ∼180 km over the dip equator is new. Recent results on solar XUV flux indicate that this could be an important parameter that controls the O(1D) 630.0 nm dayglow excitation rates through modulations in the neutral and ionic composition in lower thermosphere-ionosphere region. However, the lowering of the centroid of O(1D) 630.0 nm emission, as shown in this study, has been ascribed primarily to the fountain effect associated with the equatorial ionization anomaly.  相似文献   

2.
The variability of the F2-layer even during magnetically quiet times are fairly complex owing to the effects of plasma transport. The vertical E × B drift velocities (estimated from simplified electron density continuity equation) were used to investigate the seasonal effects of the vertical ion drifts on the bottomside daytime ionospheric parameters over an equatorial latitude in West Africa, Ibadan, Nigeria (Geographic: 7.4°N, 3.9°E, dip angle: 6°S) using 1 year of ionsonde data during International Geophysical Year (IGY) of 1958, that correspond to a period of high solar activity for quiet conditions. The variation patterns between the changes of the vertical ion drifts and the ionospheric F2-layer parameters, especially; foF2 and hmF2 are seen remarkable. On the other hand, we observed strong anti-correlation between vertical drift velocities and h′F in all the seasons. We found no clear trend between NmF2 and hmF2 variations. The yearly average value of upward daytime drift at 300 km altitude was a little less than the generally reported magnitude of 20 ms−1 for equatorial F-region in published literature, and the largest upward velocity was roughly 32 ms−1. Our results indicate that vertical plasma drifts; ionospheric F2-layer peak height, and the critical frequency of F2-layer appear to be somewhat interconnected.  相似文献   

3.
We explore the capabilities of the future space science mission IXO (International X-ray Observatory) for obtaining cosmological redshifts of distant Active Galactic Nuclei (AGNs) using the X-ray data only. We first find in which regions of the X-ray luminosity (LX) versus redshift (z) plane the weak but ubiquitous Fe Kα narrow emission line can deliver an accurate redshift (δz < 5%) as a function of exposure time, using a CCD-based Wide Field Imager (IXO/WFI) as the one baselined for IXO. Down to a 2–10 keV X-ray flux of 10−14 erg cm−2 s−1 IXO/WFI exposures of 100 ks, 300 ks and 1 Ms will deliver 20%, 40% and 60% of the redshifts. This means that in a typical 18′ × 18′ IXO/WFI field of view, 4, 10 and 25 redshifts will be obtained for free from the X-ray data alone, spanning a wide range up to z ∼ 2–3 and fairly sampling the real distribution. Measuring redshifts of fainter sources will indeed need spectroscopy at other wavebands.  相似文献   

4.
We present rotational temperature measurements of the mesospheric OH emission layer using a meridional imaging spectrograph at Millstone Hill (42.6°N, 72.5°W). The system is equipped with a state-of-the-art bare-CCD detector and can yield simultaneous quasi-meridional images of the mesospheric OH and O2 intensity and temperature fields at 87 and 94 km altitude during the course of each night. A cross-validation study of the rotational OH temperature measurements obtained on 61 nights during the autumnal months of 2005–2007 was undertaken with near-simultaneous kinetic temperature measurements made by the SABER instrument aboard the NASA TIMED satellite during overpasses of Millstone Hill. Excellent agreement was obtained between the two datasets with the small differences being attributable to differences in the spatial and temporal averaging inherent between the two datasets.  相似文献   

5.
The problem of day-to-day variability in onset of equatorial spread F (ESF) is addressed using data from the 2002 COPEX observational campaign in Brazil and numerical modeling. The observational results show that for values of virtual height of the F layer base less than 355 km at around 18:35 LT, and for the prereversal peak enhancement of the vertical plasma drift (Vp) less than 30 m/s, the spread-F (ESF) was absent on four nights over Cachimbo (9.5°S, 54.8°W, dip latitude = −2.1°). In this work we analyze the geophysical conditions for the generation of the irregularities by comparing the nights with and without the ESF. In the comparison a numerical code is used to simulate plasma irregularity development in an extended altitude range from the bottom of the equatorial F   layer. The code uses the flux corrected transport method with Boris–Book’s flux limiter for the spatial integration and a predictor–corrector method for the direct time integration of the continuity equation for O+O+ and the SOR (Successive-Over-Relaxation) method for electric potential equation. The code is tested with different evening eastward electric fields (or vertical drifts Vp < 30 m/s and Vp > 30 m/s) in order to study the influence of the prereversal enhancement in the zonal electric field on plasma bubble formation and development. The code also takes into account the zonal wind, the vertical electric field and the collision frequency of ions with neutrals and the amplitude of initial perturbation. The simulation shows a good agreement with the observational results of the ESF. The results of the code suggest that the instability can grow at the F layer bottomside by the Rayleigh–Taylor mechanism only when the Vp > 30 m/s. In the analyzed cases we have considered the competition of other geophysical parameters in the generation of plasma structures.  相似文献   

6.
Global Positioning System (GPS) receiver on the CHAllenging Mini-satellite Payload (CHAMP) and the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument, one of four on board the TIMED satellite, provide middle atmosphere temperature profiles by Radio Occultation (RO) and limb viewing infrared emission measurements, respectively. These temperature profiles retrieved by two different techniques in the stratosphere are compared with each other using more than 1300 correlative profiles in March, September and December 2005. The over-all mean differences averaged over 15 and 35 km are approximately −2 K and standard deviation is less than 3 K. Below 20 km of altitude, relatively small mean temperature differences ∼1 K are observed in wide latitudinal range except for June (during the SABER nighttime observation). In the middle to low latitudes, between 30°S and 30°N, the temperature difference increases with height from ∼0–1 K at 15 km, to ∼−4 K at 35 km of altitude. Large temperature differences about −4 to −6 K are observed between 60°S and 30°N and 31–35 km of altitude for all months and between 0° and 30°N below 16 km during June (nighttime).  相似文献   

7.
Response of the D-region of the ionosphere to the total solar eclipse of 22 July 2009 at low latitude, Varanasi (Geog. lat., 25.27° N; Geog. long., 82.98° E; Geomag. lat. = 14° 55’ N) was investigated using ELF/VLF radio signal. Tweeks, a naturally occurring VLF signal and radio signals from various VLF navigational transmitters are first time used simultaneously to study the effect of total solar eclipse (TSE). Tweeks occurrence is a nighttime phenomena but the obscuration of solar disc during TSE in early morning leads to tweek occurrence. The changes in D-region ionospheric VLF reflection heights (h) and electron density (ne: 22.6–24.6 cm−3) during eclipse have been estimated from tweek analysis. The reflection height increased from ∼89 km from the first occurrence of tweek to about ∼93 km at the totality and then decreased to ∼88 km at the end of the eclipse, suggesting significant increase in tweek reflection height of about 5.5 km during the eclipse. The reflection heights at the time of totality during TSE are found to be less by 2–3 km as compared to the usual nighttime tweek reflection heights. This is due to partial nighttime condition created by TSE. A significant increase of 3 dB in the strength of the amplitude of VLF signal of 22.2 kHz transmitted from JJI-Japan is observed around the time of the total solar eclipse (TSE) as compared to a normal day. The modeled electron density height profile of the lower ionosphere depicts linear variation in the electron density with respect to solar radiation as observed by tweek analysis also. These low latitude ionospheric perturbations on the eclipse day are discussed and compared with other normal days.  相似文献   

8.
The Limb Viewing Hyper Spectral Imager (LiVHySI) is one of the Indian payloads onboard YOUTHSAT (inclination 98.73°, apogee 817 km) launched in April, 2011. The Hyper-spectral imager has been operated in Earth’s limb viewing mode to measure airglow emissions in the spectral range 550–900 nm, from terrestrial upper atmosphere (i.e. 80 km altitude and above) with a line-of-sight range of about 3200 km. The altitude coverage is about 500 km with command selectable lowest altitude. This imaging spectrometer employs a Linearly Variable Filter (LVF) to generate the spectrum and an Active Pixel Sensor (APS) area array of 256 × 512 pixels, placed in close proximity of the LVF as detector. The spectral sampling is done at 1.06 nm interval. The optics used is an eight element f/2 telecentric lens system with 80 mm effective focal length. The detector is aligned with respect to the LVF such that its 512 pixel dimension covers the spectral range. The radiometric sensitivity of the imager is about 20 Rayleigh at noise floor through the signal integration for 10 s at wavelength 630 nm. The imager is being operated during the eclipsed portion of satellite orbits. The integration in the time/spatial domain could be chosen depending upon the season, solar and geomagnetic activity and/or specific target area. This paper primarily aims at describing LiVHySI, its in-orbit operations, quality, potential of the data and its first observations. The images reveal the thermospheric airglow at 630 nm to be the most prominent. These first LiVHySI observations carried out on the night of 21st April, 2011 are presented here, while the variability exhibited by the thermospheric nightglow at O(1D) 630 nm has been described in detail.  相似文献   

9.
Ionogram observations from the ionosonde at Fuke (9.5°N geomagnetic latitude), a Chinese low latitude station, in 2010–2012 are analyzed to present the features of F3 layer under low and moderate solar activity conditions. Structure of the ionogram, displaying the F3 layer, was more distinct and clear during MSA than LSA periods especially during spring to summer. Start time of occurrence of the F3 layer is about at 0830–0900 LT and is approximately the same for LSA and MSA conditions. The average duration time of the F3 layer occurrence was 181 min per day under F10.7 = 75 condition, 263 min in F10.7 = 99 and 358 min in F10.7 = 125, respectively. The differences of h′F2 and h′F3 exhibited obvious semiannual variation observed at Fuke from March 2010 to June 2012 and increased with increasing solar activity. The difference of foF2 and foF3 in the months February, March, September, October and November is less evident in the middle solar activity period 2011–2012 than the low solar activity 2010 and in the other period it shows a slight increase (0.5 MHz) or keeps constant. The results show that the solar activity dependence of the F3 layer occurrence at low latitude away from the magnetic equator is different from that at near the magnetic equator.  相似文献   

10.
By analyzing the vector magnetograms of Huairou Solar Observing Station (HSOS) taken at the line center (0.0 Å) and the line wing (−0.12 Å) of FeI λ5324.19 Å, we make an estimate of the measured errors in transversal azimuths (δ?) caused by Faraday rotation. Since many factors, such as the magnetic saturation and scattered light, can affect the measurement accuracy of the longitudinal magnetic field in the umbrae of sunspots, we limit our study in the region ∣Bz∣ < 800 G. The main mean azimuth rotations are about 4°, 6°, 7° and 9°, while ∣Bz∣ are in the ranges of 400–500 G, 500–600 G, 600–700 G and 700–800 G, respectively. Moreover, we find there is also an azimuth rotation of about 8° at the wavelength offset −0.12 Å of the line compared against a previous numerical simulation.  相似文献   

11.
Solar dependence of electron and ion temperatures (Te and Ti) in the ionosphere is studied using RPA data onboard SROSS C2 at an altitude of ∼500 km and 77°E longitude during early morning hours (04:00–07:00 LT) for three solar activities: solar minimum, moderate and maximum during winter, summer and equinox months in 10°S–20°N geomagnetic latitude. In winter the morning overshoot phenomenon is observed around 06:00 LT (Te enhances to ∼4000 K) during low-solar activity and to Te ∼ 3800 K, during higher solar activity. In summer, it is observed around 05:30 LT, but the rate of Te enhancement is higher during moderate solar activity (∼2700 K/hr) than the low-solar activity (∼1700 K/hr). During equinox, this phenomenon is delayed and is observed around 06:00 LT (∼4200 K) during all three activities.  相似文献   

12.
We have conducted a survey for faint quasars to B < 24.5, z < 2.1 based on archival high-latitude Hubble Space Telescope Wide Field Planetary Camera 2 (WFPC2) images covering 0.04 deg2 of the sky in three filters spanning 2300–9600 Å. Taking advantage of the superb 0.1″ resolution of WFPC2, we have developed an approach to select quasar candidates based on their morphology and position in multicolor space. We derive cumulative surface densities and compare them with our previous survey in the Groth–Westphal Strip and other faint quasar surveys that utilize very different selection approaches. In most cases the agreement with these surveys is good, however, we find approximately twice as many quasar candidates to B = 24.5 as the COMBO-17 survey. Although we are confident that our approach eliminates most contaminating stars and galaxies, spectroscopic follow-up will be required to determine the level of residual contamination and confirm or refute this excess.  相似文献   

13.
Since it is not possible to predict when a Gamma-Ray Burst (GRB) will occur or when Active Galactic Nucleus (AGN) flaring activity starts, follow-up/monitoring ground telescopes must be located as uniformly as possible all over the world in order to collect data simultaneously with Fermi and Swift detections. However, there is a distinct gap in follow-up coverage of telescopes in the eastern U.S. region based on the operations of Swift. Motivated by this fact, we have constructed a 14″ fully automated optical robotic telescope, Goddard Robotic Telescope (GRT), at the Goddard Geophysical and Astronomical Observatory. The aims of our robotic telescope are (1) to follow-up Swift/Fermi GRBs and (2) to perform the coordinated optical observations of Fermi Large Area Telescope (LAT) AGN. Our telescope system consists of off-the-shelf hardware. With the focal reducer, we are able to match the field of view of Swift narrow instruments (20′ × 20′). We started scientific observations in mid-November 2008 and GRT has been fully remotely operated since August 2009. The 3σ upper limit in a 30 s exposure in the R filter is ∼15.4 mag; however, we can reach to ∼18 mag in a 600 s exposures. Due to the weather condition at the telescope site, our observing efficiency is 30–40% on average.  相似文献   

14.
During the total solar eclipse of 2009, a week-long campaign was conducted in the Indian sub-continent to study the low-latitude D-region ionosphere using the very low frequency (VLF) signal from the Indian Navy transmitter (call sign: VTX3) operating at 18.2 kHz. It was observed that in several places, the signal amplitude is enhanced while in other places the amplitude is reduced. We simulated the observational results using the well known Long Wavelength Propagation Capability (LWPC) code. As a first order approximation, the ionospheric parameters were assumed to vary according to the degree of solar obscuration on the way to the receivers. This automatically brought in non-uniformity of the ionospheric parameters along the propagation paths. We find that an assumption of 4 km increase of lower ionospheric height for places going through totality in the propagation path simulate the observations very well at Kathmandu and Raiganj. We find an increase of the height parameter by h=+3.0h=+3.0 km for the VTX-Malda path and h=+1.8h=+1.8 km for the VTX-Kolkata path. We also present, as an example, the altitude variation of electron number density throughout the eclipse time at Raiganj.  相似文献   

15.
The response of the ionospheric F-region in the equatorial and low latitude regions in the Brazilian sector during the super geomagnetic storm on 06–07 April 2000 has been studied in the present investigation. The geomagnetic storm reached a minimum Dst of −288 nT at 0100 UT on 07 April. In this paper, we present vertical total electron content (VTEC) and phase fluctuations (in TECU/min) from GPS observations obtained at Imperatriz (5.5°S, 47.5°W; IMPZ), Brasília (15.9°S, 47.9°W; BRAZ), Presidente Prudente (22.12°S, 51.4°W; UEPP), and Porto Alegre (30.1°S, 51.1°W; POAL) during the period 05–08 April. Also, several GPS-based TEC maps are presented from the global GPS network, showing widespread and drastic TEC changes during the different phases of the geomagnetic storm. In addition, ion density measurements on-board the satellite Defense Meteorological Satellite Program (DMSP) F15 orbiting at an altitude of 840 km and the first Republic of China satellite (ROCSAT-1) orbiting at an altitude of 600 km are presented. The observations indicate that one of the orbits of the DMSP satellite is fairly close to the 4 GPS stations and both the DMSP F15 ion-density plots and the phase fluctuations from GPS observations show no ionospheric irregularities in the Brazilian sector before 2358 UT on the night of 06–07 April 2000. During the fast decrease of Dst on 06 April, there is a prompt penetration of electric field of magnetospheric origin resulting in decrease of VTEC at IMPZ, an equatorial station and large increase in VTEC at POAL, a low latitude station. This resulted in strong phase fluctuations on the night of 06–07 April, up to POAL. During the daytime on 07 April during the recovery phase, the VTEC observations show positive ionospheric storm at all the GPS stations, from IMPZ to POAL, and the effect increasing from IMPZ to POAL. This is possibly linked to the equatorward directed meridional wind. During the daytime on 08 April (the recovery phase continues), the VTEC observations show very small negative ionospheric storm at IMPZ but the positive ionospheric storm effect is observed from BRAZ to POAL possibly linked to enhancement of the equatorial ionospheric anomaly.  相似文献   

16.
In this paper, we present the spatial variations of O(1D) airglow observed by the ISUAL (Imager of Sprites and Upper Atmospheric Lightning) instrument on board the FORMOSAT-2 satellite. With a CCD camera and a 630 nm filter, ISUAL can measure global atmospheric emissions lying between the heights of 80 and 300 km. In days of 3–6 September 2008 and 25–27 February 2009, ISUAL has measured the emissions of O(1D) airglow with results showing strong longitudinal peak-3 and peak-4 structures. The Lomb-Scargle analyses for these two cases show periods of longitudes of 120° and 90° supporting the DE2 and DE3 non-migrating tides. The 630 nm emissions are enhanced in equatorial regions and are lying along the equator. Over Africa its intensity can sometimes increase up to 80% relative to other longitudes. The perturbation is so strong that non-migrating tides are erased. A case of bimodal distribution with strong emissions at latitudes in equator and mid-latitude in geographic coordinates was observed.  相似文献   

17.
We compared 8 years of ozone measurements taken at Lindau (51.66° N, 10.13° E) at altitudes between 40 and 60 km using the microwave technique with the CIRA ozone reference model that was established 20 years ago (Keating et al., 1990). We observed a remarkable decrease in ozone density in the stratopause region (i.e., an altitude of 50 km), but the decrease in ozone density in the middle mesosphere (i.e., up to 60 km in altitude) is slight. Likewise, we observed only a moderate decrease in the atmospheric region below the stratopause. Other studies have found the strongest ozone decrease at 40 km and a more moderate decrease at 50 km, which is somewhat in contradiction to our results. This decrease in ozone density also strongly depends on the season. Similar results showed model calculations using the GCM COMMA-IAP when considering the increase in methane. In the lower mesosphere/stratopause region, the strongest impact on the concentration of odd oxygen (i.e., O3 and O) was observed due to a catalytic cycle that destroys odd oxygen, including atomic oxygen and hydrogen radicals. The hydrogen radicals mainly result from an increase in water vapor with the growing anthropogenic release of methane. The finding suggesting that the stratopause region is apparently attacked more strongly by the water vapor increase has been interpreted in terms of the action of this catalytic cycle, which is most effective near the stratopause and amplified by a positive feedback between the ozone column density and the ozone dissociation rate, thereby chemically influencing the ozone density. However, the rising carbon dioxide concentration cools the middle atmosphere, thereby damping the ozone decline by hydrogen radicals.  相似文献   

18.
The low background values at nighttime of the mesospheric hydroxyl (OH) radical make it easier to single out the atmospheric response to the external solar forcing in Polar Regions. Because of the short lifetime of HOx, it is possible to follow the trails of Solar Energetic Particle (SEP) events in the terrestrial atmosphere, as shown by Storini and Damiani (2008). The sensitivity of this indicator makes discernible not only extreme particle events with a flux peak of several thousand pfu [1 pfu = 1 particle/(cm2 s sr)] at energies >10 MeV, but also those with lower flux up to about 300 pfu. Using data from the Microwave Limb Sounder (MLS) on board the EOS AURA satellite, we examined the correlation of OH abundance vs. solar proton flux for almost all the identified SEP events spanning from November 2004 to December 2006 (later on no more SEP events occurred during Solar Cycle no. 23). The channels at energies greater than 5 MeV and 10 MeV showed the best correlation values (r ∼ 0.90–0.95) at altitudes around 65–75 km whereas, as expected, the most energetic channels were most highly correlated at lower altitudes. Therefore, it is reasonably possible to estimate the solar proton flux from values of mesospheric OH (and viceversa) and it could be useful in studying periods with gaps in the records of solar particles.  相似文献   

19.
We have developed a new detector using thin lanthanum bromide crystal (32 × 3 mm) for use in X-ray astronomy. The instrument was launched in high altitude balloon flight on two different occasions, December 21, 2007, which reached a ceiling altitude of 4.3 mbs and April 25, 2008 reaching a ceiling altitude 2.8 mbs. The observed background counting rate at the ceiling altitude of 4 mbs was ∼4 × 10−3 ct cm−2 s−1 keV−1 sr−1. This paper describes the details of the experiment, the detector characteristics, and the background behaviour at the ceiling altitude.  相似文献   

20.
In this paper, we analyze VLF signals received at Busan to study the the D-region changes linked with the solar eclipse event of 22 July 2009 for very short (∼390 km) transmitter–receiver great circle path (TRGCP) during local noon time 00:36–03:13 UT (09:36–12:13 KST). The eclipse crossed south of Busan with a maximum obscuration of ∼84%. Observations clearly show a reduction of ∼6.2 dB in the VLF signal strength at the time of maximum solar obscuration (84% at 01:53 UT) as compared to those observed on the control days. Estimated values of change in Wait ionospheric parameters: reflection height (h′) in km and inverse scale height parameter (β) in km−1 from Long Wave Propagation Capability (LWPC) model during the maximum eclipse phase as compared to unperturbed ionosphere are 7 km and 0.055 km−1, respectively. Moreover, the D-region electron density estimated from model computation shows 95% depletion in electron density at the height of ∼71 km. The reflection height is found to increase by ∼7 km in the D-region during the eclipse as compared to those on the control days, implying a depletion in the Lyman-α flux by a factor of ∼7. The present observations are discussed in the light of current understanding on the solar eclipse induced D-region dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号