首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
E A Ilyin 《Acta Astronautica》1981,8(9-10):1149-1157
Many rat experiments onboard Cosmos biosatellites have furnished information concerning the effects of weightlessness, artificial gravity, and ionizing radiation combined with weightlessness on structural and biochemical parameters of the animal body. The necessity to expand the scope of physiological investigations has led to the project of flight primate studies. It is planned to carry out the first primate experiments onboard the Cosmos biosatellite in 1982. At present investigations of weightlessness effects on the cardiovascular and vestibular systems, higher nervous activity, skeletal muscles and biorhythms of two rhesus monkeys are being developed and tested. It is also planned to conduct a study of weightlessness effects on embryogenesis of rats and bioenergetics of living systems onboard the same biosatellite. Further experiments onboard Cosmos biosatellites are planned.  相似文献   

2.
The eye perceives the length of vertical and horizontal lines with an inherent asymmetry. A vertical line having the same length as a horizontal one is usually perceived to be longer. In this experimental investigation we tested the hypothesis that gravity has a direct role in producing the observed perceptual asymmetry. To this end we performed experiments in weightlessness during long-orbital space flights onboard the MIR station. Subjects performed a psychophysical task in which the length of a visually-presented vertical line was adjusted to match the length of a horizontal reference. On Earth, almost all subjects produce errors in adjusting the length of the vertical line, consistently under-estimating the length of the horizontal reference. The asymmetry of perception of the line lengths persisted in weightlessness. From these results we conclude that the phenomena of asymmetry of perception of the lengths of vertical and horizontal lines is not dependent on gravity, but is instead defined by properties of the system of internal representation. Grant numbers: 99-04-48450.  相似文献   

3.
为解决失重环境对航天员生理健康的影响,在调研国内外重力飞行器研究现状的基础上,结合重力模拟飞行器的原理及人造重力舒适度影响因素,提出了一种通过自旋产生人造重力的深空探测飞行器方案设想。最后给出了重力模拟飞行器建设的实施规划、总体方案、在轨组装流程及技术难点。深空探测重力模拟飞行器稳定运转可为空间工作生活的航天员提供与地面无异的重力环境,将为执行深空探测任务提供必要的环境保障。  相似文献   

4.
The present paper reports a kinetic analysis of changes of some physiological parameters, obtained from international literature, after changes in gravitational environment. The overall phenomenology of the adaptation to weightlessness is characterized by a rapid process followed by a slow one. The two processes show half time values differing by about five times. Also in the case of readaptation to gravity, after recovery on the Earth, two well resolved processes, showing different half time values, are observed. It is of interest to notice that the rate of response to weightlessness is lower than that to gravity. Of course, the half time values observed depend on the different physiological parameters considered. In any case, the experimental data suggest a general trend of many adaptive changes, that may all be described by a simple mathematical model.  相似文献   

5.
Pathophysiology of motor functions in prolonged manned space flights.   总被引:2,自引:0,他引:2  
The influence of weightlessness on different parts of the motor system have been studied in crew members of 140 and 175 days space flights. It has been shown that weightlessness affects all parts of the motor system including (i) the leg and trunk muscles, in which severe atonia, a decrease of strength and an increase of electromyographic cost of contraction have been observed, (ii) the proprioceptive elements and the spinal reflex mechanisms in which decreased thresholds accompanied by decreases of maximal amplitude of reflexes and disturbances in cross reflex mechanisms have been found. and (iii) the central mechanisms that control characteristics of postural and locomotor activities. The intensities and durations of disturbances of different parts of the motor system did not correlate to each other, but did correlate with prophylactic activity during space flight. The data suggest a different nature of disturbances caused by weightlessness in different parts of the motor system.  相似文献   

6.
Artificial gravitv generated by spacecraft rotation may prove a universal countermeasure against adverse effects of weightlessness in the future. The paper summarizes the results of ground-based biomedical investigations of artificial gravity and flight experiments aboard Soviet biosatellites Cosmos-782 and Cosmos-936. It is believed that at the present stage the major goal of such investigations is to determine the minimum efficient value of artificial gravity in long-term flights which may eliminate adverse effects of prolonged weightlessness. In ground-bound studies the highest priority should be given to the development of methods on increasing human tolerance to the rotating environment.  相似文献   

7.
The prospects for extending the length of time that humans can safely remain in space depend partly on resolution of a number of medical issues. Physiologic effects of weightlessness that may affect health during flight include loss of body fluid, functional alterations in the cardiovascular system, loss of red blood cells and bone mineral, compromised immune system function, and neurosensory disturbances. Some of the physiologic adaptations to weightlessness contribute to difficulties with readaptation to Earth's gravity. These include cardiovascular deconditioning and loss of body fluids and electrolytes; red blood cell mass; muscle mass, strength, and endurance; and bone mineral. Potentially harmful factors in space flight that are not related to weightlessness include radiation, altered circadian rhythms and rest/work cycles, and the closed, isolated environment of the spacecraft. There is no evidence that space flight has long-term effects on humans, except that bone mass lost during flight may not be replaced, and radiation damage is cumulative. However, the number of people who have spent several months or longer in space is still small. Only carefully-planned experiments in space preceded by thorough ground-based studies can provide the information needed to increase the amount of time humans can safely spend in space.  相似文献   

8.
Summary of experiments onboard Soviet biosatellites.   总被引:1,自引:0,他引:1  
Physiological, morphological and biochemical studies of mammals flown onboard biosatellites of the series Cosmos revealed changes in their cardiovascular, musculoskeletal, endocrine and vestibular systems. Space flight resulted in moderate stress reactions, intralabyrinthine conflict information during movements and changes in fluid-electrolyte metabolism. Exposure to artificial gravity (1 g) decreased the level of myocardial, musculoskeletal and excretory changes, but disturbed the function of equilibrium. Studies with combined weightlessness and ionizing radiation demonstrated that weightlessness did not produce a significant modifying effect on radiation damage and postradiation recovery. Consistent changes in certain systems of animals and humans in weightlessness confirm the practical importance of biosatellite studies, which also contribute to the solution of general biology, problems associated with gravity effects on life processes.  相似文献   

9.
We evaluated the influence of prolonged weightlessness on the performance of visual tasks in the course of the Russian-French missions ANTARES, Post-ANTARES and ALTAIR aboard the MIR station. Eight cosmonauts were subjects in two experiments executed pre-flight, in-flight and post-flight sessions.

In the first experiment, cosmonauts performed a task of symmetry detection in 2-D polygons. The results indicate that this detection is locked in a head retinal reference frame rather than in an environmentally defined one as meridional orientations of symmetry axis (vertical and horizontal) elicited faster response times than oblique ones. However, in weightlessness the saliency of a retinally vertical axis of symmetry is no longer significantly different from an horizontal axis. In the second experiment, cosmonauts performed a mental rotation task in which they judged whether two 3-D objects presented in different orientations were identical. Performance on this task is basically identical in weightlessness and normal gravity.  相似文献   


10.
The Cosmos-782 flight from 25 November to 15 December 1975, carried biological experiments designed to study the effects of weightlessness on insects and fish and on gravitropism and growth in several seed varieties. Investigations carried out on Drosophila melanogaster measured the frequency of recessive lethal mutations and the change in genetic distances in the sex chromosome. The study of Fundulus heteroclitus eggs and fry compared the effects of weightlessness and artificial gravity. Plants experiments studied spatial orientation of over and underground organs of Pinus silvestris and Crepis capillaris seeds. Other investigations used Phycomyces blakesleanus to compare spatial orientation and growth and development in weightlessness and artificial gravity.  相似文献   

11.
We evaluated the influence of prolonged weightlessness on the performance of three cosmonauts to bilateral symmetry detection in the course of a 15-day-long Russian-French mission CASSIOPEE 96 aboard the MIR station. We tested the influence of weightlessness on subjects' performance as a function of the retinal orientation of axis of symmetry. as a function of type of stimuli (closed versus multi-elements shapes) and as a function of visual field presentation (at fixation, left visual field. right visual field). The results indicate firstly a difference between presentation at fixation versus away of fixation. Away of fixation, no effect of microgravity on performance was shown. A hypothesis of hemispheric specialization for symmetry detection was not supported as well. At fixation, an effect of micro-gravity was shown and more interestingly, the effect was quite different as a function of type of shapes used. suggesting that symmetry detection is a multiple-stage process.  相似文献   

12.
The investigation of cardiovascular function necessarily involves a consideration of the exchange of substances at the capillary. If cardiovascular function is compromised or in any way altered during exposure to zero gravity in space, then it stands to reason that microvascular function is also modified. We have shown that an increase in cardiac output similar to that reported during simulated weightlessness is associated with a doubling of the number of post-capillary venules and a reduction in the number of arterioles by 35%. If the weightlessness of space travel produces similar changes in cardiopulmonary volume and cardiac output, a reasonable expectation is that astronauts will undergo venous neovascularization. We have developed an animal model in which to correlate microvascular and systemic cardiovascular function. The microcirculatory preparation consists of a lightweight, thermo-neutral chamber implanted around intact skeletal muscle on the back of a rat. Using this technique, the performed microvasculature of the cutaneous maximus muscle may be observed in the conscious, unanesthetized animal. Microcirculatory variables which may be obtained include venular and arteriolar numbers, lengths and diameters, single vessel flow velocities, vasomotion, capillary hematocrit anastomoses and orders of branching. Systemic hemodynamic monitoring of cardiac output by electromagnetic flowmetry, and arterial and venous pressures allows correlation of macro- and microcirculatory changes at the same time, in the same animal. Observed and calculated hemodynamic variables also include pulse pressure, heart rate, stroke volume, total peripheral resistance, aortic compliance, minute work, peak aortic flow velocity and systolic time interval. In this manner, an integrated assessment of total cardiovascular function may be obtained in the same animal without the complicating influence of anesthetics.  相似文献   

13.
Stapley P  Pozzo T 《Acta Astronautica》1998,43(3-6):163-179
In normal gravity conditions the execution of voluntary movement involves the displacement of body segments as well as the maintenance of a stable reference value for equilibrium control. It has been suggested that centre of mass (CM) projection within the supporting base (BS) is the stabilised reference for voluntary action, and is conserved in weightlessness. The purpose of this study was to determine if the CM is stabilised during whole body reaching movements executed in weightlessness. The reaching task was conducted by two cosmonauts aboard the Russian orbital station MIR, during the Franco-Russian mission ALTAIR, 1993. Movements of reflective markers were recorded using a videocamera, successive images being reconstructed by computer every 40ms. The position of the CM, ankle joint torques and shank and thigh angles were computed for each subject pre- in- and post-flight using a 7-link mathematical model. Results showed that both cosmonauts adopted a backward leaning posture prior to reaching movements. Inflight, the CM was displaced throughout values in the horizontal axis three times those of pre-flight measures. In addition, ankle dorsi flexor torques inflight increased to values double those of pre- and post-flight tests. This study concluded that CM displacements do not remain stable during complex postural equilibrium tasks executed in weightlessness. Furthermore, in the absence of gravity, subjects changed their strategy for producing ankle torque during spaceflight from a forward to a backward leaning posture.  相似文献   

14.
The functional approach to studying human motor systems attempts to give a better understanding of the processes behind planning movements and their coordinated performance by relying on weightlessness as a particularly enlightening experimental condition. Indeed, quantitative monitoring of sensorimotor adaptation of subjects exposed to weightlessness outlines the functional role of gravity in motor and postural organization. The recent accessibility of the MIR Space Station has allowed for the first time experimental quantitative kinematic analysis of long-term sensorimotor and postural adaptation to the weightless environment though opto-electronic techniques. In the frame of the EUROMIR'95 Mission, two protocols of voluntary posture perturbation (erect posture, EP; forward trunk bending, FTB) were carried out during four months of microgravity exposure. Results show that postural strategies for quasistatic body orientation in weightlessness are based on the alignment of geometrical body axes (head and trunk) along external references. A proper whole body positioning appears to be recovered only after months of microgravity exposure. By contrast, typically, terrestrial strategies of co-ordination between movement and posture are promptly restored and used when performing motor activities in the weightless environment. This result is explained under the assumption that there may be different sensorimotor integration processes for static and dynamic postural function and that the organisation of coordinated movement might rely stably on egocentric references and kinematics synergies for motor control.  相似文献   

15.
The manned exploration of the solar system and the surfaces of some of the smaller planets and larger satellites requires that we are able to keep the adverse human physiological response to long term exposure to near zero and greatly reduced gravity environments within acceptable limits consistent with metabolic function. This paper examines the physiological changes associated with microgravity conditions with particular reference to the weightless demineralizatoin of bone (WDB). It is suggested that many of these changes are the result of physical/mechanical processes and are not primarily a medical problem. There are thus two immediately obvious and workable, if relatively costly, solutions to the problem of weightlessness. The provision of a near 1 g field during prolonged space flights, and/or the development of rapid transit spacecraft capable of significant acceleration and short flight times. Although these developments could remove or greatly ameliorate the effects of weightlessness during long-distance space flights there remains a problem relating to the long term colonization of the surfaces of Mars, the Moon, and other small solar system bodies. It is not yet known whether or not there is a critical threshold value of 'g' below which viable human physiological function cannot be sustained. If such a threshold exists permanent colonization may only be possible if the threshold value of 'g' is less than that at the surface of the planet on which we wish to settle.  相似文献   

16.
Experimental observations of adaptation processes of the motor control system to altered gravity conditions can provide useful elements to the investigations on the mechanisms underlying motor control of human subject. The microgravity environment obtained on orbital flights represents a unique experimental condition for the monitoring of motor adaptation. The research in motor control exploits the changes caused by microgravity on the overall sensorimotor process, due to the impairment of the sensory systems whose function depends upon the presence of the gravity vector. Motor control in microgravity has been investigated during parabolic flights and short-term space missions, in particular for analysis of movement-posture co-ordination when equilibrium is no longer a constraint. Analysis of long-term adaptation would also be very interesting, calling for long-term body motion observations during the process of complete motor adaptation to the weightlessness environment. ELITE-S2 is an innovative facility for quantitative human movement analysis in weightless conditions onboard the International Space Station (ISS). ELITE-S2 is being developed by the Italian Space Agency, ASI is to be delivering the flight models to NASA to be included in an expressed rack in US Lab Module in February 2004. First mission is currently planned for summer 2004 (increment 10 ULF 2 ISS).  相似文献   

17.
在地面上用磁性液体制造流体的超重、失重和微重力环境   总被引:4,自引:1,他引:4  
王正良 《宇航学报》2004,25(2):179-182
磁力和重力均为非接触的力,当作用于磁性液体上的磁力和重力方向相同时,磁性液体处于超重状态;当作用于磁性液体上的磁力和重力方向相反时,磁性液体处于失重状态;当作用于磁性液体上磁力和重力相互抵消,磁性液体呈饱和磁化状态且处在均匀梯度磁场区域中时,磁性液体被表面张力约束成球体,磁性液体处于微重力状态。这一发现使我们在地面上能经济的、方便的、长时间的制造流体的小区域微重力环境,为研究微重力状态下的流体科学、生命科学,材料加工和器件开发等提供了新的方法。  相似文献   

18.
The use of experimental animals has been a major component of biomedical research progress. Using animals in space presents special problems, but also provides special opportunities. Rat and squirrel monkeys experiments have been planned in concert with human experiments to help answer fundamental questions concerning the effect of weightlessness on mammalian function. For the most part, these experiments focus on identified changes noted in humans during space flight. Utilizing space laboratory facilities, manipulative experiments can be completed while animals are still in orbit. Other experiments are designed to study changes in gravity receptor structure and function and the effect of weightlessness on early vertebrate development. Following these preliminary animals experiments on Spacelab Shuttle flights, longer term programs of animal investigation will be conducted on Space Station.  相似文献   

19.
20.
空间机构地面重力补偿设备跟踪研究   总被引:10,自引:7,他引:3  
由于飞行轨道上或其他星球上的重力环境与地球表面的重力环境差异很大,而在飞行前必须在地面确认机构在空间的性能和可靠性,这就要求在地面实现对空间机构实际工作时的空间重力环境的模拟,于是提出了对地面重力补偿设备的需求。文章对实现重力补偿的一般形式进行了介绍和分析,举例说明了常用的地面重力补偿设备的原理,总结归纳了地面重力补偿设备的设计原则和工程实施经验。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号