首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
After spending nearly six years in Earth orbit twenty stacks consisting of radiation detectors and biological objects are now back on Earth. These stacks (Experiment A0015 Free Flyer Biostack) are part of the fifty seven science and technology experiments of the Long Duration Exposure Facility (LDEF) of NASA. The major objectives of the Free Flyer Biostack experiments are to investigate the biological effectiveness of single heavy ions of the cosmic radiation in various biological systems and to provide information about the spectral composition of the radiation field and the total dose received in the LDEF orbit. The Biostacks are mounted in two different locations of the LDEF. Up to three layers of Lithium fluoride thermoluminescence dosimeters (TLD) of different isotopic composition were located at different depths of some Biostacks. The preliminary analysis of the TLD yields maximum absorbed dose rates of 2.24 mGy day-1 behind 0.7 g cm-2 shielding and 1.17 mGy day-1 behind 12 g cm-2 shielding. A thermal neutron fluence of 1.7 n cm-2 s-1 is determined from the differences in absorbed dose for different isotopic mixtures of Lithium. The results of this experiment on LDEF are especially valuable and of high importance since LDEF stayed for about six years in the prospected orbit of the Space Station Freedom. There is no knowledge about the effectiveness of the space radiation in long-term spaceflights and the dosimetric data in this orbit are scarce.  相似文献   

2.
The dosimetry of cosmic rays was performed during the first experimental flight of the IBIS facility. Different thermoluminescent detectors (TLD) have been used to measure the contribution of the low linear energy transfer component (LET < 10 keV/micrometer) and plastic nuclear track detectors (PNTD) for the high linear energy tranfer (LET) component. Several parameters of tracks have been measured to determine the LET spectra of primary and secondary charged particles. The total absorbed dose rate (TLD+PNTD) during the flight was 0.23 mGy/day and the dose equivalent rate using the ICRP 60 was 0.52 mSv/day. The corresponding mean quality factor was 2.4. These results are in agreement with those obtained aboard the MIR station with a tissue equivalent proportional counter.  相似文献   

3.
A small, portable, vibration and shock resistant thermoluminescent dosimeter system was developed to measure cosmic radiation dose on board a spacecraft. The system consists of a small battery-operated reader and a special bulb dosimeter. Doses from 10 μGy up to 100 mGy can be measured. The electrical power consumption of the reader is about 5 W, its volume is about 1 dm3 and its mass is about 1 kg. Details are given for the construction and technical parameters of the dosimeter and reader.  相似文献   

4.
In the framework of “Biology and Physics in Space” project of the European Space Agency (ESA), a returning satellite, Foton-M2, carried an open-to-space sample holder outside of the satellite body, called as BIOPAN-5, loaded with exo-biological experiments and dosemeters for RAdiation DOsimetry (RADO). One of the RADO experiments (Teflon – TLD) was dedicated to dose distribution measurements of the cosmic radiation by thermo-luminescent (TL) technique. It was found that the maximum surface absorbed dose rate, averaged over the first ∼8 mg/cm2 thickness, was ∼2 Gy/d and showed a location dependence due the shading effect of the satellite construction elements. The dose rate decreased nearly by 3 orders of magnitude below 500 mg/cm2.  相似文献   

5.
The second flight of the International Microgravity Laboratory (IML-2) on Space Shuttle flight STS-65 provided a unique opportunity for the intercomparison of a wide variety of radiation measurement techniques. Although this was not a coordinated or planned campaign, by sheer chance, a number of space radiation experiments from several countries were flown on this mission. There were active radiation measuring instruments from Japan and US, and passive detectors from US, Russia, Japan, and Germany. These detectors were distributed throughout the Space Shuttle volume: payload bay, middeck, flight deck, and Spacelab. STS-65 was launched on July 8, 1994, in a 28.45 degrees x 306 km orbit for a duration of 14 d 17 hr and 55 min. The crew doses varied from 0.935 mGy to 1.235 mGy. A factor of two variation was observed between various passive detectors mounted inside the habitable Shuttle volume. There is reasonable agreement between the galactic cosmic ray dose, dose equivalent and LET spectra measured by the tissue equivalent proportional counter flown in the payload bay with model calculations. There are significant differences in the measurements of LET spectra measured by different groups. The neutron spectrum in the 1-20 MeV region was measured. Using fluence-dose conversion factors, the neutron dose and dose equivalent rates were 11 +/- 2.7 microGy/day and 95 +/- 23.5 microSv/day respectively. The average east-west asymmetry of trapped proton (>3OMeV) and (>60 MeV) dose rate was 3.3 and 1.9 respectively.  相似文献   

6.
During the 3rd main expedition on board the “Salyut-6” orbital station in 1979 the integral characteristics of cosmic radiation were measured in various positions inside the manned modules (experiment “Integral”). Measurements were performed with thermoluminescent dosimeters, photographic films and solid state plastic detectors supplied for the experiment by specialists of the USSR, Bulgaria, Hungary, GDR and Romania. The dose gradient inside the manned modules of the station amounted to 70 % for long intervals of time. During the experimental period the dose rate inside the station was 15 to 30 mrad per day. The mean flux of particles with z 6 and LET 200 keV/μm was found to be 0.22 cm−2 day−1.  相似文献   

7.
In radiation protection, the Q-factor has been defined to describe the biological effectiveness of the energy deposition or absorbed dose to humans in the mixed radiation fields at aviation altitudes. This particular radiation field is generated by the interactions of primary cosmic particles with the atoms of the constituents of the Earth’s atmosphere. Thus the intensity, characterized by the ambient dose equivalent rate H∗(10), depends on the flight altitude and the energy spectra of the particles, mainly protons and alpha particles, impinging on the atmosphere. These charged cosmic projectiles are deflected both by the interplanetary and the Earth’s magnetic field such that the corresponding energy spectra are modulated by these fields. The solar minimum is a time period of particular interest since the interplanetary magnetic field is weakest within the 11-year solar cycle and the dose rates at aviation altitudes reach their maximum due to the reduced shielding of galactic cosmic radiation. For this reason, the German Aerospace Center (DLR) performed repeated dosimetric on-board measurements in cooperation with several German airlines during the past solar minimum from March 2006 to August 2008. The Q-factors measured with a TEPC range from 1.98 at the equator to 2.60 in the polar region.  相似文献   

8.
A dosimetry-radiometry system has been developed at the Space Research Institute of the Bulgarian Academy of Science to measure the fluxes and dose rates on the flight of the second Bulgarian cosmonaut. The dosimetry system is designed for monitoring the different space radiations, such as solar cosmic rays, galactic cosmic rays and trapped particles in the earth radiation belts. The system consists of a battery operated small size detector unit and a "read-write" and telemetry microcomputer unit. The sensitivity of the instrument (3.67 x 10(-8) rad/pulse) permits high resolution measurements of the flux and dose rate along the track of the Mir space station. We report our initial results for the period of the flight between the 7th and 17th June 1988.  相似文献   

9.
In the frame of the European Space Agency (ESA) project called “Biology and Physics in Space”, the returning satellite, Foton-M2, carried an open-to-space exposure platform outside of the satellite body, called as BIOPAN-5, loaded with exo-biological experiments and facilities for radiation dosimetry (RADO). One of the RADO experiments was dedicated to the detection of the primary galactic cosmic rays (GCR) and secondary neutrons by a track etch detector stack. The daily absorbed dose (D) and dose equivalent (H) were calculated from the experimental LET spectra (LET > 10 keV/μm). Under a shielding of ∼2.8 g/cm2 the averaged H was found to be 658 ± 8 μSv/d, with a quality factor (Q) of 6.2 ± 1.2. The LET spectra showed a local peak at ∼105 keV/μm suggesting that the majority of tracks were created by trapped protons as it has been predicted by calculations. The low LET dose of the cosmic radiation was determined by 4 TLD stacks, and the total dose was found to be 795 ± 14 μSv/d.  相似文献   

10.
The human exposure in space depends on the three factors: the flight trajectory, its date and duration and the cyclogram of the cosmonaut's activities. In the near-Earth orbits the daily dose varies within the limits of (1.5-5.0) 10(-4) Gy day-1 and greatly increases if the altitude increases. The mean daily quality factor is 1.6-2.0. Strong solar proton events in the orbits with the inclination of < 52 degrees result in the dose rate increase up to 2-3 cGy day-1. On the surface of the orbital spacecrafts the daily dose reaches 2 Gy. The neutron dose depends on the shielding mass distribution varying within the limits of 6%-30% of the charged particles dose. In deep space the dose is mainly formed by the galactic and solar cosmic rays(GCR,SCR). Behind the shielding of 2-3 g cm-2 Al the GCR dose varies in the range of (20-30) 10(-5) Gy day-1. The SCR dose can reach hundreds of cSv.  相似文献   

11.
Crews of future high-altitude commercial aircraft may be significantly exposed to atmospheric cosmic radiation from galactic cosmic rays (GCR). To help determine such exposures, the Atmospheric Ionizing Radiation Project, an international collaboration of 15 laboratories, made simultaneous radiation measurements with 14 instruments on a NASA ER-2 high-altitude aircraft. The primary instrument was a sensitive extended-energy multisphere neutron spectrometer, which was also used to make measurements on the ground. Its detector responses were calculated for neutrons and charged hadrons at energies up to 100 GeV using the radiation transport code MCNPX. We have now recalculated the detector responses including the effects of the airplane structure. We are also using new FLUKA calculations of GCR-induced hadron spectra in the atmosphere to correct for spectrometer counts produced by charged hadrons. Neutron spectra are unfolded from the corrected measured count rates using the MAXED code. Results for the measured cosmic-ray neutron spectrum (thermal to >10 GeV), total neutron fluence rate, and neutron dose equivalent and effective dose rates, and their dependence on altitude and geomagnetic cutoff generally agree well with results from recent calculations of GCR-induced neutron spectra.  相似文献   

12.
From 1 January 1986 through 1 January 2008, GOES satellites recorded 170 solar proton events. For 169 of these events, we estimated effective and equivalent dose rates and doses of galactic cosmic radiation (GCR) and solar cosmic radiation (SCR), received by aircraft occupants on simulated high-latitude flights. Dose rate and dose estimates that follow are for altitudes 30, 40, 50, and 60 kft, in that order.  相似文献   

13.
PAMELA is a satellite-borne experiment which will measure the antiparticle component of cosmic rays over an extended energy range and with unprecedented accuracy. The apparatus consists of a permanent magnetic spectrometer equipped with a double-sided silicon microstrip tracking system and surrounded by a scintillator anticoincidence system. A silicon–tungsten imaging calorimeter, complemented by a scintillator shower tail catcher, and a transition radiation detector perform the particle identification task. Fast scintillators are used for Time-of-Flight measurements and to provide the primary trigger. A neutron detector is finally provided to extend the range of particle measurements to the TeV region.PAMELA will fly on-board of the Resurs-DK1 satellite, which will be put into a semi-polar orbit in 2005 by a Soyuz rocket. We give a brief review of the scientific issues of the mission and report about the status of the experiment few months before the launch.  相似文献   

14.
Among cosmic rays, the heavy nuclei ranging from carbon to iron provide the principal contribution to the dose equivalent. The LET-distributions and absorbed dose aid dose equivalent have been calculated and are presented as a function of shielding and tissue self-shielding. At solar minimum, outside the magnetosphere, the unshielded dose equivalent of nuclei with atomic number Z > or = 6 is about 47 rem/year. The contribution of the target nuclei adds 7 rem/year. With 4 g/cm2 aluminum shielding, and at a depth of 5 cm in a biological phantom of 30 cm diameter, the respective values are 11 and 10 rem/year. Corresponding dose rates for orbits with various inclinations are presented, as well as the LET distributions of various components of cosmic rays.  相似文献   

15.
An experiment involving active detection of space radiation was carried out in the Space Research Institute (SRI) of Bulgarian Academy of Sciences, in preparation of the flight of the second Bulgarian cosmonaut. The radiations that would be encountered on the flight were modelled including solar and galactic cosmic rays and the particle radiation in the Earth's radiation belts. The dose rate was calculated for these different radiations behind the shielding of the space station. The variations in dose rates over the period of the flight were calculated and compared with measurements made during the orbit of the Mir Space Station. The calculated and measured dose rates agreed within 15-35%.  相似文献   

16.
We have developed a method to investigate the low-energy radiation environment on the outside of spacecrafts. Thereby, ultra-thin thermoluminescent (TL) detectors on the base of CaF2:Mn-PTFE are arranged in stacks and exposed to the unshielded cosmic radiation. The dose distribution within a stack is determined by successive evaluation of the thin TL sheets. The analysis of LiF thermoluminescent detector glow curves permits conclusions on the dose contribution caused by either low-energy electrons or by protons. The method was applied aboard Russian COSMOS spacecrafts as well as the MIR station. It was shown that along low-earth orbits dose rates up to 10 Gy/day within the first few mg/cm2 are typical, mainly as a result of the electron impact.  相似文献   

17.
Time-resolved radiation exposure measurements inside the crew compartment have been made during recent Shuttle missions with the USAF Radiation Monitoring Equipment-III (RME-III), a portable four-channel tissue equivalent proportional counter. Results from the first six missions are presented and discussed. The missions had orbital inclinations ranging from 28.5 degrees to 57 degrees, and altitudes from 200-600 km. Dose equivalent rates ranged from 40-5300 micro Sv/dy. The RME-III measurements are in good agreement with other dosimetry measurements made aboard the vehicle. Measurements indicate that medium- and high-LET particles contribute less than 2% of the particle fluence for all missions, but up to 50% of the dose equivalent, depending on the spacecraft's altitude and orbital inclination. Iso-dose rate contours have been developed from measurements made during the STS-28 mission. The drift rate of the South Atlantic Anomaly (SAA) is estimated to be 0.49 degrees W/yr and 0.12 degrees N/yr. The calculated trapped proton and Galactic Cosmic Radiation (GCR) dose for the STS-28 mission were significantly lower than the measured values.  相似文献   

18.
The Mir station has been in a 51.65 degrees inclination orbit since March 1986. In March 1995, the first US astronaut flew on the Mir-18 mission and returned on the Space Shuttle in July 1995. Since then three additional US astronauts have stayed on orbit for up to 6 months. Since the return of the first US astronaut, both the Spektr and Priroda modules have docked with Mir station, altering the mass shielding distribution. Radiation measurements, including the direct comparison of US and Russian absorbed dose rates in the Base Block of the Mir station, were made during the Mir-18 and -19 missions. There is a significant variation of dose rates across the core module; the six locations sampled showed a variation of a factor of nearly two. A tissue equivalent proportional counter (TEPC) measured a total absorbed dose rate of 300 microGy/day, roughly equally divided between the rate due to trapped protons from the South Atlantic Anomaly (SAA) and galactic cosmic radiation (GCR). This dose rate is about a factor of two lower than the rate measured by the thinly shielded (0.5 g cm-2 of Al) operational ion chamber (R-16), and about 3/2 of the rate of the more heavily shielded (3.5 g cm-2 of Al) ion chamber. This is due to the differences in the mass shielding properties at the location of these detectors. A comparison of integral linear energy transfer (LET) spectra measured by TEPC and plastic nuclear track detectors (PNTDs) deployed side by side are in remarkable agreement in the LET region of 15-1000 keV/micrometer, where the PNTDs are fully efficient. The average quality factor, using the ICRP-26 definition, was 2.6, which is higher than normally used. There is excellent agreement between the measured GCR dose rate and model calculations, but this is not true for trapped protons. The measured Mir-18 crew skin dose equivalent rate was 1133 microSv/day. Using the skin dose rate and anatomical models, we have estimated the blood-forming organ (BFO) dose rate and the maximum stay time in orbit for International Space Station crew members.  相似文献   

19.
DORIS system: The new age   总被引:1,自引:0,他引:1  
The boarding of the first DGXX DORIS instrument on Jason-2 mission gives us the opportunity to present the improvements that have been implemented on the DORIS system. The goal of this paper is to present information about the new capacities of the DORIS system and to give the current status of its components. An overview of the DORIS system, the International DORIS Service and the Jason-2 satellite mission are first presented. Then the new characteristics of the on-board instrument are detailed. The capacity to track up to seven ground beacons simultaneously dramatically increases the number of measurements performed: a factor of three increase over Jason-1 is observed at the altitude of 1330 km. It also increases the diversity of directions of observation and allows low elevation measurements from 0°. The new phase measurements capability allows now phase processing. The instability of the Jason-1 USOs (Ultra-Stable Oven-controlled quartz oscillator) while crossing the South Atlantic Anomaly has been solved by decreasing the sensitivity to radiation by a factor of 10. New features of the on-board software enhance the coastal and inland water altimetry and increase the robustness of the data. The new software also improves the real time orbit accuracy for operational altimetry. The improvements introduced concurrently on the ground segment have also significantly enhanced capability. The new RINEX exchange formats provide simultaneous phase and pseudo-range measurements. The maintenance of the DORIS Beacons Network and the work done by the DORIS Signal Integrity monitoring team lead to an increased availability of the Network from 75% to 90% and so to a more homogenous orbit coverage.  相似文献   

20.
Radiation characteristics (particle fluxes, doses, and LET spectra) are calculated for spacecraft in the International Space Station orbit. The calculations are made in terms of the dynamic model for galactic cosmic rays and the probabilistic model for solar cosmic rays developed at the Institute of Nuclear Physics of Moscow State University.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号