首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
This paper reviews the recent results concerning streams and magnetic fields in the inner solar system. Specifically, it discusses in situ magnetic field and plasma observations within 1 AU which describe MHD stream flows and Alfvénic fluctuations, and it discusses the latest theories of those phenomena. Observationally, there have been significant advances in our understanding of streams and fluctuations as the result of acquiring nearly complete sets of high resolution plasma and magnetic data simultaneously at two or more points by IMPs 6, 7, and 8, Mariner-Venus-Mercury, HELIOS-1, and HELIOS-2. HELIOS and IMP observations and coronal hole observations demonstrated that streams can have very thin boundaries in latitude and longitude near the Sun. This has necessitated a revision of earlier views of stream dynamics, for it is now clear that magnetic pressure is a major factor in the dynamics of stream in the inner solar system and that nonlinear phenomena are significant much closer to the Sun than previously believed. Simultaneous IMP 6, 7, and 8 observations of Alfvénic fluctuations have shown that they are probably not simply transverse Alfvén waves; they suggest that Alfvénic fluctuations are better described as nonplanar, large-amplitude, general Alfvén waves moving through an inhomogeneous and discontinuous medium, and coupled to a compressive mode.Proceedings of the Symposium on Solar Terrestrial Physics held in Innsbruck, May–June 1978.  相似文献   

2.
We present preliminary results of a study of solar wind Alfvénic fluctuations using magnetometer and plasma measurements from the spacecraft Ulysses. We focus on a particular case study, and use wave language to discuss the fluctuations. The observations are consistent with a mixture of convected structures and Alfvén wave trains. Furthermore, our results tend to suggest that the Alfvénic-fluctuations propagate in the radial direction.  相似文献   

3.
A kinematic method of representing the three-dimensional solar wind flow is devised by taking into account qualitatively the stream-stream interaction which leads to the formation of a shock pair. Solar wind particles move radially away from the Sun, satisfying the frozen-magnetic field condition. The uniqueness of the present approach is that one can incorporate both theoretical and observational results by adjusting the parameters involved and that a self-consistent data set can be simulated. One can then infer the three-dimensional structure of the solar wind which is vital in understanding the interaction between the solar wind and the magnetosphere, and it is for this reason that the present kinematic method is devised. In the first part of this paper, the present kinematic method is described in detail by demonstrating that the following solar wind features can be simulated: (i) Variations of the solar wind quantities (such as the solar wind speed, the density and the IMF vector), associated with the solar rotation, at the Earth; (ii) the solar wind flow pattern in the meridian planes; (iii) the three-dimensional structure of the corotating interaction region (CIR); and (iv) the three-dimensional structure of the warped solar current sheet.In Section 2, the three-dimensional structure of solar wind disturbances are studied by introducing a flare-generated high speed stream into the two-stream model of the solar wind developed in Section 1. The treatment of the stream-stream interaction is generalized to deal with a flare-generated high speed stream, yielding a shock pair. The shock pair causes three-dimensional distortion of the solar current sheet as it propagates outward from the Sun. It is shown that a set of characteristic time variations of the solar wind speed, density, the interplanetary magnetic field magnitude B and angles (theta) and gf (phi) result at the time of the passage at the location of the Earth for a given set of flare conditions. These quantities allow us to compute the solar wind-magnetosphere energy coupling function . Time variations of the two geomagnetic indices AE and Dst are then estimated from . The simulated geomagnetic storms are compared with observed ones.In the third part, it is shown that recurrent geomagnetic storms can reasonably be reproduced, if fluctuating components of the interplanetary magnetic field (IMF) are superposed on the kinematic model of the solar wind developed in the first part. As an example, we simulate the fluctuating components by linearly polarized Alfvén waves and by random variations of the IMF angle (theta). Characteristics of the simulated and observed geomagnetic storms are discussed in terms of the simulated and observed AE and Dst indices. If the fluctuating components of the IMF can generally be identified as hydromagnetic waves, they may be an important cause for individual magnetospheric substorms, while the IMF magnitude B and the solar wind speed V modulate partially the intensity of magnetospheric substorms and storms.  相似文献   

4.
The radio telemetry links between Earth and a spacecraft near superior conjunction penetrate the corona at ranges well within the acceleration regime of the solar wind. Occultation experiments in the solar corona have been performed on many interplanetary missions beginning with the Mariner and Pioneer series and extending up to the more recent data on Helios, Viking, and Voyager. The changes in group and phase velocity of the radio signal are measured to determine the total electron content of the corona and its fluctuations. The broadening of the carrier signal may be used in combination with the electron content data to derive a solar wind velocity profile. The wave number spectrum of electron density fluctuations in the corona may be inferred from amplitude and phase scintillations of the received signal. Linearly polarized signals, which are rotated along the propagation path by the Faraday effect, can provide information on the coronal magnetic field and its variations.Paper presented at the IX-th Lindau Workshop The Source Region of the Solar Wind.  相似文献   

5.
Pneuman  G. W. 《Space Science Reviews》1986,43(1-2):105-138
In this review, we consider the central physical aspects pertinent to the acceleration of the solar wind. Special importance is placed on the high-speed streams since the properties of these structures seem to strain the various theoretical explanations the most. Heavy emphasis is also given to the observations — particularly as to what constraints they place on the theories. We also discuss certain sporadic events such as spicules, macrospicules, X-ray bright points, and outflows seen in the EUV associated with the explosive events, jets, and coronal bullets which could be of relevance to this problem.Three theoretical concepts pertaining to the solar wind acceleration process are examined — purely thermal acceleration with and without extended heating, acceleration due to Alfvén wave pressure, and diamagnetic acceleration. Emphasis is given to how well these theories meet the constraints imposed by the observations. Diamagnetism is argued to be a powerful ingredient in solar wind theory, both in the light of observed sporatic outflows seen in the chromosphere and transition region and also because of its effectiveness in increasing the flow speed and producing strong acceleration near the Sun in line with coronal hole observations.  相似文献   

6.
A theory of the origin and evolution of the Solar System (Alfvén and Arrhenius, 1975, 1976) which considered electromagnetic forces and plasma effects is revised in the light of new information supplied by space research. In situ measurements in the magnetospheres and solar wind have changed our views of basic properties of cosmic plasmas. These results can be extrapolated both outwards in space, to interstellar clouds, and backwards in time, to the formation of the solar system. The first extrapolation leads to a revision of some cloud properties which are essential for the early phases in the formation of stars and solar nebulae. The latter extrapolation makes possible to approach the cosmogonic processes by extrapolation of (rather) well-known magnetospheric phenomena.Pioneer-Voyager observations of the Saturnian rings indicate that essential parts of their structure are fossils from cosmogonic times. By using detailed information from these space missions, it seems possible to reconstruct certain events 4–5 billion years ago with an accuracy of a few percent. This will cause a change in our views of the evolution of the solar system.  相似文献   

7.
The properties of different solar wind streams depend on the large scale structure of the coronal magnetic field. We present average values and distributions of bulk parameters (density, velocity, temperature, mass flux, momentum, and kinetic and thermal energy, ratio of thermal and magnetic pressure, as well as the helium abundance) as observed on board the Prognoz 7 satellite in different types of the solar wind streams. Maximum mass flux is recorded in the streams emanating from the coronal streamers while maximum thermal and kinetic energy fluxes are observed in the streams from the coronal holes. The momentum fluxes are equal in both types of streams. The maximum ratio of thermal and magnetic pressure is observed in heliospheric current sheet. The helium abundance in streams from coronal holes is higher than in streams from streamers, and its dependences on density and mass flux are different in different types of the streams. Also, the dynamics of -particle velocity and temperature relative to protons in streams from coronal holes and streamers is discussed.  相似文献   

8.
The Harvard-Smithsonian Center for Astrophysics and the High Altitude Observatory have defined a joint coronagraphs experiment for a future Spacelab mission. The instrumentation package would include an ultraviolet light coronagraph to measure the intensity and profiles of spectral lines formed between 1.2 and 8 solar radii from Sun center and a white light coronagraph to measure the intensity and polarization of visible light. The overall goals of the joint program are to use new coronal plasma diagnostic techniques to understand the physical processes and mechanisms operating in the solar corona, to understand the acceleration of high-speed and low-speed solar wind streams and to extrapolate this knowledge to other stars in order to help understand the physics of stellar coronae and stellar mass loss.Proceedings of the Conference Solar Physics from Space, held at the Swiss Federal Institute of Technology Zurich (ETHZ), 11–14 November 1980.  相似文献   

9.
The kinetic properties of heavy ions in the solar wind are known to behave in a well organized way under most solar wind flow conditions: Their speeds are all equal and faster than that of hydrogen by about the local Alfvén speed, and their kinetic temperatures are proportional to their mass. The simplicity of these properties points to a straightforward physical interpretation; wave-particle interactions with Alfvén waves are the probable cause. With the SWICS sensor on board Ulysses, it is now possible to investigate the kinetic properties of many more ion species than before. Furthermore, the transition of Ulysses into the fast stream emanating from the south polar coronal hole since 1992 allows us to study these properties both in the slow, interstream solar wind, as well as in an unambiguously identified fast stream. We present data from SWICS/Ulysses on the dominant ions of He, C, O, Ne, and Mg. As a result we find that, both in the slow wind and in fast streams, the isotachic property is obeyed even better than it could be determined by the ICI instrument on ISEE-3. The mass proportionality ofT kin is also shown to hold for these ions, including the newly identified C and Mg.  相似文献   

10.
Models of the transition region — corona — solar wind system are investigated in order to find the coronal helium abundance and to study the role played by coronal helium in controlling the the solar wind proton flux. The thermal force on -particles in the transition region sets the flow of helium into the corona. The frictional coupling between -particles and protons and/or the electric polarization field determines the proton flux in the solar wind as well as the fate of the coronal helium content.  相似文献   

11.
Coronal holes have been identified as source regions of the fast solar wind, and MHD wave activity has been detected in coronal holes by remote sensing, and in situ in fast solar wind streams. I review some of the most suggestive wave observations, and discuss the theoretical aspects of MHD wave heating and solar wind acceleration in coronal holes. I review the results of single fluid 2.5D MHD, as well as multi-fluid 2.5D MHD models of waves in coronal holes, the heating, and the acceleration of the solar wind be these waves.  相似文献   

12.
There is now strong observational evidence that the composition of the Galactic Cosmic Rays (GCRs) exhibits some significant deviations with respect to the abundances measured in the local (solar neighbourhood) interstellar medium (ISM). Two main scenarios have been proposed in order to account for these differences (`anomalies). The first one, referred to as the `two-component scenario, invokes two distinct components to be accelerated to GCR energies by supernova blast waves. One of these components is just made of ISM material of `normal solar composition, while the other one emerges from the wind of massive mass-losing stars of the Wolf–Rayet (WR) type. The second model, referred to as the `metallicity-gradient scenario, envisions the acceleration of ISM material whose bulk composition is different from the local one as a result of the fact that it originates from inner regions of the Galaxy, where the metallicity has not the local value. In both scenarios, massive stars, particularly of the WR type, play an important role in shaping the GCR composition. After briefly reviewing some basic observations and predictions concerning WR stars (including s-process yields), this paper revisits the two proposed scenarios in the light of recent non-rotating or rotating WR models.  相似文献   

13.
This article reviews recent development of the theory of current loop coalescence and shock waves, giving particular attention to particle acceleration caused by these processes. First, explosive reconnection driven by the current loop coalescence and associated particle acceleration are studied by theoretical and magnetohydrodynamic simulation methods and the results are compared with observations of solar flares; this model gives a good explanation for the quasi-periodic structure of some solar flare bursts. Next follows a discussion of particle acceleration in association with fast magnetosonic shock waves. It is shown theoretically and by relativistic particle simulation that a quasi-perpendicular shock wave can accelerate trapped ions in the direction perpendicular to the ambient magnetic field up to speeds much greater than the Alfvén speed, . When the ambient magnetic field is rather strong ( ce pe ), both ions and electrons can be accelerated to relativistic energies. For both the nonrelativistic and relativistic cases, the time needed for the acceleration is very short; it is for the ions. These results are compared with the rapid and simultaneous acceleration of ions and electrons in the impulsive phase of solar flares.  相似文献   

14.
Direct observations of solar-wind particles are discussed in detail. A well-defined quiet state of the solar wind is indicated by observations made from 1962 to 1967. The plasma properties in this quiet state are compared with those predicted by hydrodynamic models of the coronal expansion. While the basic flow parameters are predicted with reasonable accuracy by these models, the thermal properties of the solar-wind particles remain largely unexplained. As the interplanetary plasma is not in thermodynamic equilibrium, the thermal properties are determined by the specific energy-transfer mechanisms operative in the plasma. The observed magnitude of the magnetic-field-aligned anisotropy of proton random motions is interpreted as evidence for the presence of instability-generated waves; the effect of these waves on the thermal properties is examined. The observed chemical compositon of the solar wind is discussed and related to the solar origin of the inter-planetary material. Finally, the spatial and temporal structure of the medium is investigated through consideration of patterns of variation in the plasma properties.  相似文献   

15.
The abundance of 3He in the present day local interstellar cloud (LIC) and in the sun has important implications for the study of galactic evolution and for estimating the production of light nuclei in the early universe. Data from the Solar Wind Ion Composition Spectrometer (SWICS) on Ulysses is used to measure the isotopic ratio of helium (3He/4He = ) both in the solar wind and the local interstellar cloud. For the solar wind, the unique high-latitude orbit of Ulysses allows us to study this ratio in the slow and highly dynamic wind in the ecliptic plane as well as the steady high-latitude wind of the polar coronal holes. The 3He+/4He+ ratio in the local cloud is derived from the isotopic ratio of pickup helium measured in the high-speed solar wind. In the LIC the ratio is found to be (2.48 -0.62 +0.68 ) × 10-4 with the 1- uncertainty resulting almost entirely from statistical error. In the solar wind, is determined with great statistical accuracy but shows systematic differences between fast and slow solar wind streams. The slow wind ratio is variable. Its weighted average value (4.08 ± 0.25) × 10-4 is, within uncertainties, in agreement with the Apollo SWC results. The high wind ratio is less variable but smaller. The average in the fast wind is (3.3 ± 0.3) × 10-4.  相似文献   

16.
Coronal holes are the coolest and darkest regions of the upper solar atmosphere, as observed both on the solar disk and above the solar limb. Coronal holes are associated with rapidly expanding open magnetic fields and the acceleration of the high-speed solar wind. During the years of the solar minima, coronal holes are generally confined to the Sun??s polar regions, while at solar maxima they can also be found at lower latitudes. Waves, observed via remote sensing and detected in-situ in the wind streams, are most likely responsible for the wind and several theoretical models describe the role of MHD waves in the acceleration of the fast solar wind. This paper reviews the observational evidences of detection of propagating waves in these regions. The characteristics of the waves, like periodicities, amplitude, speed provide input parameters and also act as constraints on theoretical models of coronal heating and solar wind acceleration.  相似文献   

17.
Data on composition in the solar wind are summarized and compared with best estimates of abundances in the outer convective zone of the Sun. Several mechanisms of element and isotope fractionation are discussed in relation to observed abundances and their variations.The evidence available so far indicates that in addition to ion fractionation in the corona there is a separation mechanism operating at low solar altitude that affects solar wind composition. It is suggested that the systematic depletion of helium observed in the solar wind is in part caused by ion-neutral separation in the chromosphere-transition zone. Conditions for this mechanism to be effective are discussed. It is shown that ion-neutral separation is much more pronounced than ion-ion separation under these conditions. Therefore, this mechanism should fractionate elements according to the rate at which first ionization occurs. This implies that isotope fractionation by this mechanism is minor.Ion-neutral separation may be responsible for the general depletion that is observed in the slow interstream solar wind as well as in the fast streams coming out of coronal holes. However, the occurrences of very low He/H ratios are probably caused in the corona.Paper presented at the IX-th Lindau Workshop The Source Region of the Solar Wind.  相似文献   

18.
The solar wind emanating from coronal holes (CH) constitutes a quasi-stationary flow whose properties change only slowly with the evolution of the hole itself. Some of the properties of the wind from coronal holes depend on whether the source is a large polar coronal hole or a small near-equatorial hole. The speed of polar CH flows is usually between 700 and 800 km/s, whereas the speed from the small equatorial CH flows is generally lower and can be <400 km/s. At 1 AU, the average particle and energy fluxes from polar CH are 2.5×108 cm–2 sec–1 and 2.0 erg cm–2 s–1. This particle flux is significantly less than the 4×108 cm–2 sec–1 observed in the slow, interstream wind, but the energy fluxes are approximately the same. Both the particle and energy fluxes from small equatorial holes are somewhat smaller than the fluxes from the large polar coronal holes.Many of the properties of the wind from coronal holes can be explained, at least qualitatively, as being the result of the effect of the large flux of outward-propagating Alfvén waves observed in CH flows. The different ion species have roughly equal thermal speeds which are also close to the Alfvén speed. The velocity of heavy ions exceeds the proton velocity by the Alfvén speed, as if the heavy ions were surfing on the waves carried by the proton fluid.The elemental composition of the CH wind is less fractionated, having a smaller enhancement of elements with low first-ionization potentials than the interstream wind, the wind from coronal mass ejections, or solar energetic particles. There is also evidence of fine-structure in the ratio of the gas and magnetic pressures which maps back to a scale size of roughly 1° at the Sun, similar to some of the fine structures in coronal holes such as plumes, macrospicules, and the supergranulation.  相似文献   

19.
For <bi,be, the electron and ion bounce frequencies, the response of a plasma to an externally applied electromagnetic perturbation is nonlocal. This implies, via the quasi-neutrality equation, the development of an electrostatic potential which is constant for a given magnetic field line. In the near equatorial region the corresponding potential electric field is shown to oppose the effect of the induced electric field associated with the externally applied perturbation. Thus the effect of the induced electric field is partially shielded; the total azimuthal electric field (i.e. induced plus potential) tends to be small, which explains why the radial flow velocity is slow during quasi-steady conditions prevailing during the growth phase and after the active phase. The nonlocal response of the plasma also leads to the development of a parallel current that may generate current driven Alfvén (CDA) waves, which mode convert into shear Alfvén (SA) waves. CDA/SA waves are systematically observed at early breakup; they grow very fast and produce a parallel diffusion of electrons. As soon as the diffusion time is shorter than the bounce time (d<b), the nonlocal response vanishes. Thus the shielding disappears, and an enhanced transport is restored at the rate fixed by the induced electric field alone. We show that fast flows effectively occur when CDA waves have enough power to diffuse electrons (over d<b). Electron parallel diffusion also leads to an interruption of the parallel current and therefore to a disruption of the perpendicular current.  相似文献   

20.
In 1973, during the total solar eclipse, we flew an experiment aboard the Concorde supersonic airliner in order to investigate the possible presence of white-light coronal waves. Our experiment failed to detect any significant effects, so it became clear that such waves should be searched for by use of finer, i.e., spectroscopic methods.Proceedings of the Conference Solar Physics from Space, held at the Swiss Federal Institute of Technology Zurich (ETHZ), 11–14 November 1980.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号