首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An efficient regenerative life Support system for manned base cannot be conceived without biological processes. Therefore since the 1960's, numerous projects have been initiated to close, as far as possible, the biological loop. Based on the selected concepts (i.e. carbon and/or nitrogen cycles, microbial organisms and/or higher plants) mathermatical models have been studied and built. Unfortunately, to our knowledge these robust models do not take into account the effects of the space environment (i.e. reduced gravity, radiation,…). In the past, a large number of scientific studies has been performed to understand these effects but only a few of them have tried to quantify them. In this paper we present a very simplified concept of an ecosystem. Its objectives, which are compatible with a non-pressurised mission, are on one hand to quantify microbial kinetics and on the other hand to demonstrate the validity of several technologies and technical concepts.  相似文献   

2.
Using biotic turnover of substances in trophic chains, natural and artificial ecosystems are similar in functioning, but different in structure. It is necessary to have quantitative criteria to evaluate the efficiency of artificial ecosystems (AES). These criteria are dependent on the specific objectives for which the AES are designed. For example, if AES is considered for use in space, important criteria are efficiency in use of mass, power, volume (size) and human labor and reliability. Another task involves the determination of quantitative criteria for the functioning of natural ecosystems. To solve the problem, it is fruitful to use a hierarchical approach suitable for both individual links and the ecosystem as a whole. Energy flux criteria (principles) were developed to estimate the functional activities of biosystems at the population, community and ecosystem levels. A major feature of ecosystems as a whole is their biotic turnover of matter the rate of which is restricted by the lack of limiting substances. Obviously, the most generalized criterion is to take into account the energy flux used by the biosystem and the quantity of limiting substance included in its turnover. The use of energy flux by ecosystem, E(USED)--is determined from the photoassimilation of CO2 by plants (per time unit). It can be approximately estimated as the net primary production of photosynthesis (NPP). So, the ratio of CO2 photoassimilation rate (sometimes, measured as NPP) to the total mass of limiting substrate can serve as a main universal criterion (MUC). This MUC characterizes the specific cycling rate of limiting chemical elements in the system and effectiveness of every ecosystem including the global Biosphere. Comparative analysis and elaboration of quantitative criteria for estimation of natural and artificial ecosystems activities is of high importance both for theoretical considerations and for real applications.  相似文献   

3.
Although soil is a component of terrestrial ecosystems, it is comprised of a complex web of interacting organisms, and therefore can be considered itself as an ecosystem. Soil microflora and fauna derive energy from plants and plant residues and serve important functions in maintaining soil physical and chemical properties, thereby affecting net primary productivity (NPP), and in the case of contained environments, the quality of the life support system. We have been using 3 controlled-environment facilities (CEF's) that incorporate different levels of soil biological complexity and environmental control, and differ in their resemblance to natural ecosystems, to study relationships among plant physiology, soil ecology, fluxes of minerals and nutrients, and overall ecosystem function. The simplest system utilizes growth chambers and specialized root chambers with organic-less media to study the physiology of plant-mycorrhizal associations. A second system incorporates natural soil in open-top chambers to study soil bacterial and fungal population response to stress. The most complex CEF incorporates reconstructed soil profiles in a "constructed" ecosystem, enabling close examination of the soil foodweb. Our results show that closed ecosystem research is important for understanding mechanisms of response to ecosystem stresses. In addition, responses observed at one level of biological complexity may not allow prediction of response at a different level of biological complexity. In closed life support systems, incorporating soil foodwebs will require less artificial manipulation to maintain system stability and sustainability.  相似文献   

4.
C.E.B.A.S.-AQUARACK is a long-term multi-generation experimental device for aquatic organisms which is disposed for utilization in a space station. It results from the basic idea of a space aquarium for maintaining aquatic animals for longer periods integrated in a AQUARACK which consists of a modular animal holding tank, a semi-biological/physical water recycling system and an electronical control unit. The basic idea to replace a part of the water recycling system by a continuous culture of unicellular algae primarily leads to a second system for experiments with algae, a botanical AQUARACK consisting of an algal reactor, a water recyling and the electronical control unit. The combination of the zoological part, and the botanical part with a common control system in the AQUARACK, however, results in a "Closed Equilibrated Biological Aquatic System" (C.E.B.A.S.) representing an closed artificial ecosystem. Although this is disposed primarily as an experimental device for basic zoological, botanical and interdisciplinary research it opens the theoretical possibility to adapt it for combined production of animal and plant biomass on ground or in space. The paper explains the basic conception of the hardware construction of the zoological part of the system, the corresponding scientific frame program including the choice of the experimental animals and gives some selected examples of the hardware-related research. It further on discusses the practical and economical relevance of the system in the development of a controlled aquatical life support system in general.  相似文献   

5.
Key factors of ecosystem functioning are of the same nature for artificial and natural types. An hierarchical approach gives the opportunity for estimation of the quantitative behavior of both individual links and the system as a whole. At the organismic level we can use interactions of studied macroorganisms (man, animal, higher plant) with selected microorganisms as key indicating factors of the organisms immune status. The most informative factor for the population/community level is an age structure of populations and relationships of domination/elimination. The integrated key factors of the ecosystems level are productivity and rates of cycling of the limiting substances. The key factors approach is of great value for growth regulations and monitoring the state of any ecosystem, including the life support system (LSS)-type.  相似文献   

6.
In this paper, the influence of the extent of openness of ecosystem that is defined by the dilution rate, which characterizes the extent of flowage of the pond, on the intensity of the biotic circulation in ecosystems with different regulation types, number of trophic links and extent of closing has been investigated. We considered open systems, we took into account the return of the limiting substances, such as nitrogen and phosphorous, into the cycle by degradation of detritus and products of vital functions of consumers. It was shown by the numerical calculations that the increase of the dilution rate in without recycle ecosystems leads to increase of the net primary production up to the maximum value corresponding to the two-link trophic chain (biogenic substance and producer) and then, to gradually decrease. The residual concentration of biogenic limiting substances monotone increases. Net primary production and residual concentration of biogenic limiting substances in systems with recycle with even number of links behaves similarly to that in without recycle ecosystems. In the systems with recycle with the odd number of links that values lies on the stable level. We showed that in wide range of the dilution rate the recycling of the ecosystem can highly increase the net primary production and reduce residual concentration of biogenic limiting substances. The influence of the dilution rate on numbers of links that may exist in the system was analyzed.  相似文献   

7.
MELISSA is a micro-organisms based ecosystem conceived as a tool for understanding the behaviour of artificial ecosystems, and developing the technology for a future biological life support system for long term space mission. The driving element of MELISSA is the recovering of oxygen and edible biomass from waste (faeces, urea). Due to its intrinsic instability and the safety requirements of manned missions, an important control strategy is developed to pilot this system and to optimize its recycling performance. This is a hierarchical control strategy. Each MELISSA compartment has its local control system, and taking into account the states of other compartments and a global desired functioning point, the upper level determines the setpoints for each compartment. The developed approach is based on first principles models of each compartment (physico chemical equations, stoichiometries, kinetic rates, ...). Those models are used to develop a global simulator of the system (in order to study the global functioning). They are also used in the control strategy, which is a non linear predictive model based strategy. This paper presents the general approach of the control strategy of the loop from the compartment level up to the overall loop. At the end, some simulation and experimental results are presented.  相似文献   

8.
Life Support is a basic issue since manned space flight began. Not only to support astronauts and cosmonauts with the essential things to live, however, also animals which were carried for research to space etc. together with men need support systems to survive under space conditions. Most of the animals transported to space participate at the life support system of the spacecraft. However, aquatic species live in water as environment and thus need special developments. Research with aquatic animals has a long tradition in manned space flight resulting in numerous life support systems for them starting with simple plastic bags up to complex support hardware. Most of the recent developments have to be identified as part of a technological oriented system and can be described as small technospheres. As the importance arose to study our Earth as the extraordinary Biosphere we live in, the modeling of small ecosystems began as part of ecophysiological research. In parallel the investigations of Bioregenerative Life Support Systems were launched and identified as necessity for long-term space missions or traveling to Moon and Mars and beyond. This paper focus on previous developments of Life Support Systems for aquatic animals and will show future potential developments towards Bioregenerative Life Support which additionally strongly benefits to our Earth's basic understanding.  相似文献   

9.
A mathematical model was used to study the response of ecosystems of different structures to external impact. The response was measured as a sensitivity coefficient: the magnitude of the system's response vs. the change of the factor in the inflow. The formula has been obtained to calculate the sensitivity coefficient for ecosystems containing different numbers of trophic links. The derived sensitivity coefficients demonstrate that the degree of compensation for the external impact can differ depending on the type of system regulation and the length of the trophic chain. E. g. the sensitivity coefficient decreases with complexity of trophic links in an ecosystem for top-down controlled systems and impact of degree of openness on sensitivity e.g. closed ecosystems show higher sensitivity then fully open ecosystem to impacts also bottom-up control system show less sensitivity then top-down. Grant numbers: N99-04-96017, N25.  相似文献   

10.
航天器表面充电研究表明充电状态与空间电环境和航天器自身情况有着极为密切的关系。空间电环境是导致航天器表面充电的直接客观原因,它受太阳活动和地磁活动的强烈影响。研究空间电环境状态是认识航天器表面充电原因的基础。本文对已提出的许多空间电环境模型作了较为全面的综述和讨论  相似文献   

11.
Studying material transformations and biotic cycling in artificial ecosystems (AES), we need to know the principles of biological adaptation of active organisms to change in the environment. Microorganisms in AES for water purification are the most active transforming organisms and consumers of the organic substances contained in wastes. Utilization of organic substances is directly connected with the energy fluxes used by AES. According to energy criteria, the energy fluxes used by a biological system tend to reach maximum values under stable conditions. Unutilized substrate concentration decreases as a result of biological adaptations. After a dramatic change in environmental factors, for example, after a sharp increase in the flow rate of organic substances, the biological system is not able to react quickly. The concentration of unutilized substrate increases and the energy flux used by the biological system decreases. The structure of the microbial community also changes, with a decrease in biological diversity. The efficiency of energy use by simple terrestrial ecosystems depends on the energetic intensity and interactions between plants and rhizospheric microorganisms.  相似文献   

12.
The anthropogenic impact on the Earth's ecosystems are leading to dramatic changes in ecosystem functioning and even to destruction of them. System analysis and the use of heuristic modeling can be an effective means to determine the main biological interactions and key factors that are of high importance for understanding the development of ecosystems. Cycling of limiting substances, induced by the external free energy flux, and trophic links interaction is the basis of the mathematical modeling studies presented in this paper. Mathematical models describe the dynamics of simplified ecosystems having different characteristics: 1) different degrees of biotic turnover closure (from open to completely closed); 2) different numbers of trophic links (including both "top-down", "bottom-up" regulation types); 3) different intensities of input-output flows of the limiting nutrient and its total amount in the system. Adaptive values of the changes of lower hierarchical levels (populational, trophic chain level) are to be estimated by integrity indices for total system functioning (e.g. NPP, total photosynthesis). The approach developed can be used for evaluating the contributions of lower hierarchical levels to the functioning of the higher hierarchical levels of the system. This approach may have value for determining biomanipulation management and their assessment.  相似文献   

13.
Effects of solar UV-B radiation on aquatic ecosystems.   总被引:7,自引:0,他引:7  
Solar UV degrades dissolved organic carbon photolytically so that they can readily be taken up by bacterioplankton. On the other hand solar UV radiation inhibits bacterioplankton activity. Bacterioplankton productivity is far greater than previously thought and is comparable to phytoplankton primary productivity. According to the "microbial loop hypothesis," bacterioplankton is seen in the center of a food web, having a similar function to phytoplankton and protists. The penetration of UV and PAR into the water column can be measured. Marine waters show large temporal and regional differences in their concentrations of dissolved and particulate absorbing substances. A network of dosimeters (ELDONET) has been installed in Europe ranging from Abisko in Northern Sweden to Gran Canaria. Cyanobacteria are capable of fixing atmospheric nitrogen which is then made available to higher plants. The agricultural potential of cyanobacteria has been recognized as a biological fertilizer for wet soils such as in rice paddies. UV-B is known to impair processes such as growth, survival, pigmentation, motility, as well as the enzymes of nitrogen metabolism and CO2 fixation. The marine phytoplankton represents the single most important ecosystem on our planet and produces about the same biomass as all terrestrial ecosystems taken together. It is the base of the aquatic food chain and any changes in the size and composition of phytoplankton communities will directly affect food production for humans from marine sources. Another important role of marine phytoplankton is to serve as a sink for atmospheric carbon dioxide. Recent investigations have shown a large sensitivity of most phytoplankton organisms toward solar short-wavelength ultraviolet radiation (UV-B); even at ambient levels of UV-B radiation many organisms seem to be under UV stress. Because of their requirement for solar energy, the phytoplankton dwell in the top layers of the water column. In this near-surface position phytoplankton will be exposed to solar ultraviolet radiation. This radiation has been shown to affect growth, photosynthesis, nitrogen incorporation and enzyme activity. Other targets of solar UV irradiation are proteins and pigments involved in photosynthesis. Whether or not screening pigments can be induced in phytoplankton to effectively shield the organisms from excessive UV irradiation needs to be determined. Macroalgae show a distinct pattern of vertical distribution in their habitat. They have developed mechanisms to regulate their photosynthetic activity to adapt to the changing light regime and protect themselves from excessive radiation. A broad survey was carried out to understand photosynthesis in aquatic ecosystems and the different adaptation strategies to solar radiation of ecologically important species of green, red and brown algae from the North Sea, Baltic Sea, Mediterranean, Atlantic, polar and tropical oceans. Photoinhibition was quantified by oxygen exchange and by PAM (pulse amplitude modulated) fluorescence measurements based on transient changes of chlorophyll fluorescence.  相似文献   

14.
The possibility of introducing genetically engineered microorganisms (GEM) into simple biotic cycles of laboratory water microcosms was investigated. The survival of the recombinant strain Escherichia coli Z905 (Apr, Lux+) in microcosms depends on the type of model ecosystems. During the absence of algae blooming in the model ecosystem, the part of plasmid-containing cells E. coli decreased fast, and the structure of the plasmid was also modified. In conditions of algae blooming (Ankistrodesmus sp.) an almost total maintenance of plasmid-containing cells was observed in E. coli population. A mathematics model of GEM's behavior in water ecosystems with different level of complexity has been formulated. Mechanisms causing the difference in luminescent exhibition of different species are discussed, and attempts are made to forecast the GEM's behavior in water ecosystems.  相似文献   

15.
Mathematical models which describe the dynamics of two vital body systems (hematopoiesis and small intestinal epithelium) in mammals exposed to acute and chronic radiation are developed. These models, based on conventional biological theories, are implemented as systems of nonlinear differential equations. Their variables and constant parameters have clear biological meaning, that provides successful identification and verification of the models in hand. It is shown that the predictions of the models qualitatively and quantitatively agree with the respective experimental data for small laboratory animals (mice, rats) exposed to acute/chronic irradiation in wide ranges of doses and dose rates. The explanation of a number of radiobiological effects, including those of the low-level long-term exposures, is proposed proceeding from the modeling results. All this bears witness to the validity of employment of the developed models, after a proper identification, in investigation and prediction of radiation effects on the hematopoietic and small intestinal epithelium systems in various mammalian species, including humans. In particular, the models can be used for estimating effects of irradiation on astronauts in the long-term space missions, such as Lunar colonies and Mars voyages.  相似文献   

16.
Animal studies in space or analogous environments have suggested that there may be problems in the reproductive sphere; such factors might limit mankind's ability to live and work for extended periods of time in microgravity or on non-terrestrial planetary surfaces. A review of reproductive functioning in animal species studied during space flight demonstrated that most species were affected significantly by the absence of gravity and/or the presence of radiation. These two factors induced alterations in normal reproductive functioning independently of, as well as in combination with, each other. Based on animal models, we have identified several potential problem areas regarding human reproductive physiology and functioning in the space environment. While there are no current space flight investigations, the animal studies suggest priorities for future research in human reproduction. Such studies will be critical for the successful colonization of the space frontier.  相似文献   

17.
超高速流动是飞行器再入大气层时所面临的高速高温流动环境,膨胀管是少数几种能模拟超高速流动的地面设备之一。采用数值模拟方法对超高速试验进行辅助分析诊断,流动模拟时热化学反应模型的选择对流场特性影响较大,分别选择5组分、11组分热平衡及5组分热非平衡模型,对比研究3种不同热化学反应模型对双楔试验模型数值模拟结果的影响,以进一步评估超高速流动模拟时热化学反应模型的适用范围。结果表明,试验气流条件下5组分化学模型即可满足要求,加速气流条件则必须采取11组分化学模型,而对于流动中热非平衡效应显著时,热化学非平衡模型更为适用。  相似文献   

18.
生态学研究发现,多种食饵选择对捕食者-食饵系统的稳定性、持久性等方面有着重要的影响。处于食物链中间层的种群,既是顶层捕食者的食饵,同时又是捕食者,因此中间捕食者的种群数量变化,对整个生态系统有着不可忽略的影响。假设中间捕食者具有其他可供选择的食饵,建立了一个由顶级捕食者、中间捕食者和食饵所构成的三维食物链系统,并对此系统展开动力学分析,推导出系统各个平衡点的存在性和稳定性条件。对Hopf分支的存在性条件进行了深入的分析,并以食饵选择参数为分支参数,对可能出现的Hopf分支情况进行了数值模拟。结合理论和数值结果,分析食饵选择性对食物链系统的稳定性产生的影响。   相似文献   

19.
While experiments carried out in Space with isolated cells have shown that eucaryotic cells are able to sense and respond to the absence of gravity by modifying their reactions, experiments in which more complex processes have been investigated, such as Biological Systems undergoing development under Microgravity, have been surprisingly unaffected by the space environment. This can be considered a curious result since all organisms are evolutionarily adapted to the current level of the gravity force in our planet and should eventually change if this parameter will vary in a permanent manner. In fact, the small effects of the modifications in gravity on development in short term experiments may be equivalent to the difficulties in detecting the involvement of other basic physical processes such as diffusion-controled auto-organizative reactions in currently developing biological systems. An apparent exception to this lack of effect is experiments where brine shrimp dormant gastrulae directly exposed to the space environment accumulate developmental defects as a consequence of cosmic irradiation. In this article we discuss the idea that at a certain stage during the evolutionary emergence of multicellular organisms the cues laid by generic forces such as gravity were involved in the evolutionary organization of these primitive organisms. As evolution proceed, these early mechanisms may have been obscured and/or made redundant by the appearance of new internal, environment-independent biological regulatory mechanisms. On the other hand, behavioral responses that may be important, for example, in setting the life-spans of organisms may still be more readily susceptible to manipulation by external cues as experiments carried out by our group in Space and on the ground with Drosophila melanogaster indicate.  相似文献   

20.
Considerations of design for life support systems.   总被引:1,自引:0,他引:1  
During the design phase for construction of artificial ecosystems, the following considerations are important. (1) Influences on living things in the ecosystem, such as lifestyles and physiological functions caused by stresses due to environmental changes. The long stay in the artificial ecosystem has a possibility to lead to evolutional change in the living things. (2) The system operation method in trouble, which relates to maintainability. (3) The system metamorphosis according to new technologies. (4) Route minimization of material flow that leads to an optimum system layout.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号