首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 584 毫秒
1.
长焦距TDICCD遥感器光学系统的特点和发展趋势   总被引:1,自引:0,他引:1  
文章介绍了国外有关长焦距TDI CCD遥感器的研究情况,结合实际的设计经验,系统地阐述了此类系统的特点和其可选的光学系统结构型式的特点,总结出长焦距TDI CCD遥感器光学系统的发展趋势。  相似文献   

2.
文中首先介绍了时间延迟积分TDI器件在实时观测相机上的应用。然后,作者从TDICCD相机设计出发,在实验室加工了两套TDICCD相机动态成像装置,动态成像质量达到了满意的结果。  相似文献   

3.
文中介绍TDICCD的优点,重点阐述TDICCD在航天遥感器应用需要考虑的主要技术问题及国外发展概况。  相似文献   

4.
星敏感器光学系统参数的确定   总被引:2,自引:0,他引:2  
黄欣 《航天控制》2000,18(1):44-50
光学系统是星敏感器的重要组成部分。选择合理的参数不但能确保星敏感器达到预期的性能,而且有助于降低产品的研制成本。本文介绍一种确定光学系统参数的新方法,包括通过参考比较已有星敏感器及其光学系统特性来选取新光学系统焦距、相对孔径和视场;根据所选取的参数预计星敏感器的捕获概率;采用综合恒星光谱方法确定光学系统中心波长和光谱范围。  相似文献   

5.
空间可展开光学系统主镜分块方案研究   总被引:1,自引:0,他引:1  
未来的空间任务要求光学遥感器的口径越来越大,可展开光学系统是实现特大口径光学遥感器的主要技术途径之一.其主要特点是主镜分块、收拢发射、入轨展开,并且主镜超轻量化.文章分析了影响可展开光学系统主镜分块的因素,提出了主镜分块原则,在原则的指导下提出了约4m口径空间光学遥感器的主镜分块方案.  相似文献   

6.
航天光学遥感器工作于太空中,长期恶劣的空间环境及短暂发射入轨时的状态对光学系统的设计与装调提出了苛刻的要求,确保光学系统在轨像质优异是航天光学遥感器研制的关键技术.文章结合国际上航天光学遥感器的发展需求对光学系统装调技术及发展现状进行了分析、总结,提出了中国后续航天光学遥感器装调与测试技术的突破方向.  相似文献   

7.
介绍的MISD(Method of Improved Subobject Division)算法是用图形软件建立目标的几何模型,提取其相关几何及拓扑信息后,进行自动遮挡处理,然后运用物理光学(PO),物理绕射理论(PTD),以及射线追踪技术,对复杂目标的RCS进行预估。  相似文献   

8.
间接热控在高分辨率光学遥感器恒温控制中的应用   总被引:2,自引:0,他引:2  
针对高分辨率光学遥感器(以下简称高分遥感器)恒温控制要求的不断提高,文章分析了传统热控技术的优势与不足,提出采用间接热控技术进行大口径高分遥感器恒温控制的设计方法,并结合某高分遥感器的热控要求、关键部件的热控设计方案,详细阐述了间接热控技术的技术特点与实现途径。仿真分析结果及试验数据表明,间接热控技术能够满足遥感器的恒温控制需求,可以实现高分遥感器光学系统及主要结构的恒温控制精度优于±0.3℃。  相似文献   

9.
增长焦距、加大口径是提高空间光学遥感器空间分辨率的主要手段,但焦距和口径的增大意味着遥感器体积、研制难度和制造成本的骤增。要达到可见光甚高分辨率,采用传统的设计思想和制造工艺已无法实现,更何况体积和质量巨大也难以发射。本文介绍和分析了几种解决大口径系统的方案,包括:分块可展开成像系统、稀疏孔径系统和干涉成像系统。  相似文献   

10.
可展开光学系统是实现特大口径光学遥感器的技术途径之一.可展开光学系统的主要特点是主镜分块、收拢发射、入轨展开,并且主镜超轻量化.文章主要介绍了实现可展开光学系统主镜的两种方法(超轻分块镜和超轻超薄分块镜),并对两者的实现难易程度进行了比较.  相似文献   

11.
大口径、长焦距光学遥感器垂直装调过程中需要采用反射镜自准直方法测试光学系统的波前像差。文章研究了一种自准直反射镜系统,该光学系统中反射镜具备多维调整功能,利用自准直方法,可用于大口径相机的垂直装调。该自准直反射镜系统利用伺服电机驱动,实现反射镜的多自由度运动。反射镜利用一种六足杆结构实现静定支撑设计,并设计了一种随动重力卸载装置,使得镜面面形均方根误差小于1/100波长,满足使用要求。  相似文献   

12.
基于CMOS APS的星敏感器光学系统参数确定   总被引:8,自引:0,他引:8  
董瑛  邢飞  尤政 《宇航学报》2004,25(6):663-668
基于CMOS APS图象传感器的星敏感器是适应航天技术的发展而产生的新一代姿态敏感器。确定光斑形状和大小、光学系统有效通光孔径、视场和焦距等参数是进行星敏感器光学设计的前提。本文基于选定的CMOS APS图象传感器分别对这些参数进行了分析和计算。确定光斑形状和大小的依据是,减小由于探测器像元对光斑能量分布的采样导致点扩散函数变形,从而引起的利用亚像元技术求星像中心的计算误差。光学系统的有效通光孔径与星敏感器所能探测到的极限星等有关,通过从目标辐射特性直到探测器响应的能量计算可以确定孔径的大小。确定视场和焦距首先要满足星敏感器实现全天自主星图识别所需的导航星捕获概率,其次要考虑与之相关的误差。  相似文献   

13.
复合材料在长焦距空间光学遥感器上的应用   总被引:1,自引:0,他引:1  
对碳纤维增强聚合材料(CFRP)和碳化硅颗粒增强铝基(SiCp/Al)复合材料在空间光学遥感器的应用进行了介绍,并以某长焦距空间光学遥感器的主支撑结构为例,对应用不同材料时遥感器的质量、固有频率、热位移等进行了研究。研究结果表明:应用复合材料能够使主支撑结构质量降为278kg,从而降低发射成本;结构具有较大的刚度,固有频率为156.09Hz,满足设计指标;可以更加有效控制结构热变形引起的光学元件刚体位移,提高成像品质。文章对复合材料更好地应用于长焦距空间光学遥感器,具有一定的参考价值。  相似文献   

14.
辐射定标光机系统在模拟空间环境下的热变形直接影响定标光学系统成像质量,并决定星载遥感器辐射定标试验精度。文章建立的辐射定标光机系统有限元模型,以某卫星多光谱扫描仪辐射定标试验中的实测温度变化作为温度载荷,计算和研究了该系统在真空低温环境下的热-结构耦合变形的分布情况和分布规律。结果表明:在非均匀稳态低温环境下,该系统光学支架热变形使主镜及主反射镜发生刚性位移,引起垂轴方向位移、倾斜,黑体的离焦和光学系统焦距变化;反射镜表面畸变RMS值均为1/40波长以下,可以满足实际光学系统的面形准确度要求。  相似文献   

15.
脉冲多普勒雷达发射一组脉冲重复频率(PRF)恒定且相位相参的射频脉冲,叫做相干驻留间隔或CDI。由此产生的雷达回波脉冲在雷达接收机/处理机的多普勒滤波器组中被当作一个整体并进行相参积累,以便为在杂波环境中检测小目标提供必要的相参处理增益和速度鉴别能力,相对较长的CDI和最小天线扫描速率约束常常使目标照射限制在每个波束驻留时间的几个CDI上,由于每个CDI回波的功率可能因CDI之间射频频率分集(为减  相似文献   

16.
2D碳/碳复合材料CVI过程的数值模拟研究   总被引:7,自引:1,他引:7  
本文根据3D碳/碳复合材料的结构特征及CVI工艺的特点建立了孔隙模型和动力学模型,并利用该模型对其CVI过程进行了模拟与分析。模拟结果与实验结果的对比表明该数学模型是合理的。  相似文献   

17.
调制传递函数MTF(Module Transfer Function)在物理光学理论中,是光学系统成像性能的综合评价指标。遥感器MTF的性能变化会导致遥感图像的质量变化,遥感图像质量的变化则导致描述遥感图像的参数的变化。文章以CBERS-1的02星IRMSS遥感器为例,在实验室条件下模拟遥感器在轨运行的成像过程并获得图像数据,MTF可通过专业仪器直接测量,然后再进行MTF与遥感图像参数的相关分析,从而确定出与MTF相关性最强的图像参数。文章的相关分析采用SPSS统计分析软件完成。  相似文献   

18.
某空间光学遥感器的振动抑制及装星应力卸载技术应用   总被引:1,自引:0,他引:1  
文章从某空间光学遥感器对振动抑制与装星应力卸载的需求出发,针对性地设计了一种阻尼隔振器。通过理论分析及实际应用研究证明:该隔振器不仅能够对遥感器在发射主动段的振动响应进行一定抑制,而且兼顾了遥感器在与卫星装配时装配应力的有效卸载,减少了对光学系统的影响,提高了该遥感器对天、地观测任务的可靠性。  相似文献   

19.
大口径甚高分辨率空间光学遥感器技术途径探讨   总被引:11,自引:3,他引:11  
增长焦距、加大口径是提高空间光学遥感器空间分辨率的主要手段,但焦距和口径的增大意味着遥感器体积、研制难度和制造成本的骤增。要达到可见光甚高分辨率,采用传统的设计思想和制造工艺已无法实现,更何况体积和质量巨大也难以发射。本文介绍和分析了几种解决大口径系统的方案,包括:分块可展开成像系统、稀疏孔径系统和干涉成像系统。  相似文献   

20.
为了满足空间遥感不同应用的需求,完成了4种型式的长焦距同轴三反光学系统设计。根据同轴三反光学系统设计理论,介绍了同轴三反光学系统设计初始结构设计方法,以工作谱段0.45-0.9μm、F数10、焦距10m为例,对4种型式的长焦距同轴三反光学系统进行优化设计,设计视场内获得接近衍射极限的成像品质,并分析和比较了这几种光学系...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号