首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
以不同界面层厚度的SiC纤维为增强相,采用先驱体浸渍裂解工艺(PIP)制备SiCf(PyC)/SiC复合材料,并在复合材料基体中引入SiC晶须,对其性能进行研究。结果表明:热解碳(PyC)界面层厚度约为230 nm时,SiC纤维拔出明显,SiCf/SiC复合材料拉伸强度、弯曲强度和断裂韧度分别达到192.3 MPa、446.9 MPa和11.4 MPa?m1/2;在SiCf/SiC复合材料基体中引入SiC晶须后,晶须的拔出、桥连及裂纹偏转等增韧机制增加了裂纹在基体中传递时的能量消耗,使复合材料的断裂韧度和弯曲强度分别提高了22.9%和9.1%。  相似文献   

2.
在国产T300碳纤维上沉积不同厚度的热解碳形成界面层,通过前驱体浸渍裂解工艺制备“迷你”Cf/SiC复合材料,考察了T300碳纤维在相同工艺过程中其界面层厚度的最优工艺参数,并研究了热解碳界面层与“迷你”复合材料拉伸性能的关联性.采用SEM与Raman手段对Cf/SiC复合材料进行结构表征.结果表明:该复合材料有明显的裂纹偏转,经高温热处理后界面层状结构更加明显,其复合材料的拉伸强度随热解碳厚度的增加其值有先增加后减小的趋势(PyC的厚度在0~150 nm),当界面层厚度约为60 nm时达到最大值(1 385.7 MPa).  相似文献   

3.
采用箔—纤维—箔方法制备了连续SiC纤维增强Ti_3Al基复合材料(SiC_f/Ti_3Al),测定了两种SiC纤维增强Ti_3Al基复合材料的力学性能,分析了热处理工艺对复合材料力学性能的影响,讨论了复合材料在不同条件下的断裂机制研究表明,国产SiC纤维(无碳涂层)增强Ti_3Al复合材料的界面结合强度高于有碳涂层纤维增强的复合材料,力学性能却低于SCS-6纤维(有碳涂层)增强的复合材料。当热处理时间延长时,SCS-6/Ti_3Al复合材料界面反应层厚度增加,复合材料的力学性能下降。  相似文献   

4.
为研究界面层对SiC_f/SiC复合材料力学性能及氧化行为的影响,采用先驱体浸渍裂解工艺制备了3种不同界面层体系的SiC_f/SiC复合材料。3种界面层分别为热解碳(PyC)、PyC+BN-Ⅰ和PyC+BN-Ⅱ(其中BN-Ⅰ表示B质量分数大约2%,BN-Ⅱ表示B质量分数大约20%)。研究表明,具有PyC界面层的SiC_f/SiC复合材料常温力学性能最高,其常温弯曲强度达到380MPa,而双界面层体系中,SiC_f/SiC复合材料常温弯曲强度分别为282MPa(PyC+BN-Ⅰ)和259MPa(PyC+BN-Ⅱ)。1200℃氧化试验表明,具有PyC+BN-Ⅱ界面层的SiC_f/SiC复合材料弯曲强度保留率最高,为54%。3种不同界面层体系的SiC_f/SiC复合材料在氧化后均表现为脆性断裂。微观结构显示,界面和纤维被氧化是导致材料最终失效的原因;能谱分析表明,具有PyC+BN-Ⅰ和PyC+BN-Ⅱ界面层的SiC_f/SiC复合材料纤维内部未检测到O原子存在,证实BN有保护纤维的作用。  相似文献   

5.
采用石墨树脂浆料浸渍三维针刺碳毡增强体,热解后得到C/C多孔体,并采用反应熔体浸渗法制备C/SiC复合材料。研究了石墨填料对C/C多孔体的结构以及C/SiC复合材料力学性能的影响。结果表明,石墨树脂浆料浸渍时树脂填充束间小孔形成结构致密的亚结构单元,而石墨可以有效填充胎网层等大孔隙,一次浸渍热解后碳产率有效提高。所得C/SiC复合材料包括C、SiC和Si三相,由于亚结构单元的存在,熔融Si并未渗入纤维束内部,束内碳纤维未受损伤。片层石墨的存在使碳基体/石墨和纤维结合强度提高、纤维脱粘拔出阻力增大,从而使材料强度提高;而且石墨可以使裂纹在扩展时发生偏转,从而避免了复合材料脆性断裂,使其呈现出类似金属的伪塑性断裂行为。制备出的C/SiC复合材料的弯曲断裂强度为118 MPa,最大应变可达1.0%。  相似文献   

6.
以聚碳硅烷(PCS)、二乙烯基苯(DVB)和SiC微粉为原料制备了2D-Cf/SiC材料,考察了首次裂解温度对材料结构与性能的影响.结果表明,首次裂解温度的提高有助于弱化界面结合,形成良好的界面结构,从而提高材料的力学性能.当裂解温度从1000℃提高到1600℃时,材料的弯曲强度由200.7MPa提高到319.2MPa,剪切强度由16.8MPa提高到29.8MPa,断裂韧度由7.4 MPa·m1/2提高到15.0 MPa·m1/2.  相似文献   

7.
界面相对3D-C/SiC复合材料热膨胀性能的影响   总被引:10,自引:0,他引:10  
利用减压化学气相浸渗(LPCVI)技术制备了3D C/SiC复合材料,从热解碳(PyC)界面相厚度对界面结合强度和热应力的影响出发,研究了界面相对复合材料热膨胀性能的影响。结果表明:①界面相厚度对3D C/SiC复合材料热膨胀性能的影响主要归因于其对界面结合强度和脱黏面上的滑移阻力的影响。在一定厚度范围(约70~220nm)内,材料的热膨胀系数随热解碳厚度的增加而逐渐降低;②热处理可提高材料的热稳定性,并通过改变材料内部结构,使热应力重新分布,对复合材料的高温热膨胀产生显著影响,但是,并没有改变基体裂纹的愈合温度(900℃)。  相似文献   

8.
从SiC/SiC复合材料氧化行为、氧化环境下的失效机理与力学性能三个方面,对SiC/SiC复合材料氧化退化的研究进展进行了综述。文中总结了影响材料氧化行为的重要因素,包括温度、氧分压、水蒸汽以及界面层厚度等。详细分析了材料在不同温度范围内的失效机制,即氧化脆化是SiC/SiC复合材料在中温范围内的重要失效机制,材料在高温下的失效主要是由纤维强度退化、蠕变及界面氧化引起的。总结出:界面氧化消耗、纤维性能退化是引起材料力学性能退化的关键因素,指出了目前研究中存在的问题和发展方向。  相似文献   

9.
主要研究无界面层、裂解碳和氮化硼3种界面层体系对SiCf/SiC复合材料力学性能的影响:首先,三维四向编织的SiC纤维预制体分别经过无界面层处理、裂解碳界面层制备(CVI工艺)和BN界面层制备(PIP工艺)3种不同工艺处理;以聚碳硅烷为原料,采用PIP工艺制备出3种SiCf/SiC陶瓷基复合材料工艺试验件;对工艺试验件的基本力学性进行研究,评价不同纤维预制体处理工艺对材料性能的影响。研究结果表明,无涂层复合材料样品的弯曲强度最高;具有PyC涂层复合材料的弯曲强度略有下降,但断裂韧性较高;具有BN界面层的复合材料弯曲强度和断裂韧性均出现了较大程度的降低。3个样品力学性能的差别主要与纤维/界面层/基体之间作用力有关。本研究结果可以用于SiCf/SiC复合材料构件制造工作中,为制造工艺的初步筛选提供参考依据。  相似文献   

10.
以新型先驱体LPVCS(含乙烯基液态聚碳硅烷)为原料,以经CVD裂解碳(PyC)界面改性的KD-1型SiC纤维作为增强相,采用先驱体浸渍裂解工艺(PIP)制备三维编织SiC/SiC复合材料,并对其室温及1300℃弯曲性能测试表征。试验结果表明,采用LPVCS为先驱体制备SiC/SiC复合材料,降低了材料制备周期,且9个周期后材料密度达到2.14g/cm3,开孔率为10.8%。在1300℃空气环境中,SiC/SiC复合材料弯曲强度达到470.2MPa,断裂韧性达到20.7MPa·m1/2。采用扫描电镜对SiC/SiC复合材料1300℃下断口形貌进行观察,SiC纤维存在一定拔出;断口表面存在较为严重的氧化现象,这是导致材料弯曲强度降低的主要原因。  相似文献   

11.
对等温化学气相渗透法(ICVI)制备的C/SiC复合材料进行热处理,利用声发射(AE)技术对热处理前后C/SiC试样拉伸过程声发射累积能量进行分析,通过SEM进行微结构观察。结果表明:界面层较薄的C/SiC试样经1 500℃热处理后拉伸强度与初始强度相近,经1 700和1 900℃热处理后拉伸强度显著提高,其断裂应变随着热处理温度升高而大幅提高,弹性模量却呈现下降趋势;界面层较厚的C/SiC试样经1 500和1 700℃热处理后拉伸强度变化不大,断裂应变显著提高,弹性模量逐渐降低,经1 900℃热处理后拉伸强度和断裂应变开始下降,而弹性模量变化较小。热处理可以显著提高C/SiC的韧性,在拉伸过程中的断裂功和声发射累积能量均显著增加。界面层较薄的C/SiC断裂模式从脆性逐渐向韧性转变,而界面层较厚的C/SiC热处理后韧性进一步提高。  相似文献   

12.
SiC含量对Ti_3SiC_2/SiC复合材料性能的影响   总被引:3,自引:0,他引:3  
采用反应热压烧结法制备了Ti3SiC2/SiC复合材料,针对SiC含量对该复合材料致密化程度、力学性能以及应力.应变行为的影响进行了研究.结果表明:(1)随着SiC含最的增加,试样难于致密,试样需要在更高的温度才能达到较高的致密度;(2)随SiC含量的增加,Ti3SiC2/SiC复合材料弯曲强度和断裂韧性提高,但SiC含量达到50%时,由于复合材料含有较多的孔洞,使强度和断裂韧性降低;(3)Ti3SiC2/SiC复合材料在常温下表现为非脆性断裂.  相似文献   

13.
采用低浓度先驱体溶液利用先驱体浸渍裂解(PIP)工艺在SiC纤维表面制备了SiC涂层,研究了浸渍裂解次数对纤维涂层形貌的影响.研究表明,采用10%的PCS先驱体溶液经3次浸渍裂解后可在纤维表面制得连续致密的SiC涂层.采用经涂层处理的SiC纤维布经热模压成型-先驱体浸渍裂解工艺制备了2D-SiCf/SiC复合材料,其弯曲强度随制备涂层浸渍裂解次数的增加先增后降,经3次浸渍裂解制备涂层的复合材料强度最高,由未经涂层处理的163.5MPa增大到245.9MPa,强度提高近50%.研究证明,SiC纤维表面SiC涂层使纤维在材料致密化过程所受的损伤减小,同时改善了界面,使复合材料强度明显提高.  相似文献   

14.
本文利用AgCuTi-W复合钎料作中间层,在适当的工艺参数下真空钎焊Cf/SiC复合材料与Ti合金,利用SEM,EDS,XRD分析接头微观组织结构,利用剪切试验检测接头力学性能。研究结果表明:钎焊时,复合钎料中的Ti借助Cu-Ti液相与Cf/SiC复合材料反应,在Cf/SiC复合材料与连接层界面形成Ti3SiC2,Ti3Si和少量TiC化合物的混合反应层。复合钎料中的Cu与Ti合金中的Ti发生互扩散,在连接层与Ti合金界面形成不同成分的Cu—Ti化合物过渡层。钎焊后,形成W颗粒强化的致密复合连接层,W颗粒主要分布在Cu-Ti相中。W的加入缓解了接头的残余热应力,Cf/SiC/AgCuTi—W/TC4接头剪切强度明显高于CF/SiC/AgCuTi/TC4接头。  相似文献   

15.
CSCVI法制备C布增韧SiC基复合材料及其微观结构   总被引:2,自引:0,他引:2  
为了提高CVI法制备C/SiC复合材料的致密化速度 ,提出了连续同步CVI(CSCVI)法制备C布增韧SiC基复合材料的技术路线 ,制备了C/SiC复合材料 ,并观察了其微观结构。实验结果表明 ,在CSCVI工艺中 ,SiC基体沉积速度越快 ,材料的致密化程度越大且致密效果越好。同时 ,SiC基体沉积速度只由沉积温度与MTS(CH3 SiCl3 )流量控制 ,使工艺的可操作性增强 ,工艺参数可在较大范围内变动  相似文献   

16.
利用化学气相浸渗法制备了 C/ Si C复合材料 ,研究了两种加热方式 (电阻加热和中频感应加热 )下 Si C沉积物形貌、沉积机制以及复合材料结构和性能。结果表明 :电阻加热时沉积单元为高温熔滴 ,Si C沉积物为卵石形貌 ;感应加热时沉积单元为 Si C固体粒子 ,Si C沉积物为粒状形貌。电阻加热时高温熔滴易于渗入纤维束内部 ,复合材料结构均匀 ,致密度高 ;而感应加热时 Si C固体粒子多以团聚体的形式沉积在纤维束表面 ,难于渗入纤维束内部 ,复合材料结构均匀性差 ,难以致密。沉积机制的差异导致两种复合材料的结构差异 ,使得复合材料的力学性能不同 ,电阻加热时复合材料弯曲强度、断裂韧性和断裂功较高 ;感应加热时复合材料性能较低  相似文献   

17.
采用先驱体转化法(PIP方法)制备C/SiC陶瓷基复合材料,通过调整多孔预制件的体积密度制备出不同组分比的C/SiC复合材料。结果显示,C/SiC复合材料的热膨胀系数随着复合材料中SiC含量的增加而增加,其与CVDSiC涂层之间的热匹配也相应增加,通过CVI方法制备梯度过渡层,在C/SiC复合材料表面制备出致密度较高的CVDSiC涂层。  相似文献   

18.
针对高速推进系统温度测量传感器的设计方法、测量误差等核心问题,综述了现阶段高速推进系统接触式和非接触式温度测量的方法。其中,重点综述了辐射与红外测量、可调谐二极管激光吸收光谱(TDLAS)、相干反斯托克斯拉曼散射(CARS)及温度敏感涂料(TSP)等非接触温度测量技术在高速推进系统应用的研究进展和发展趋势,并分析了上述温度测量技术存在的问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号