首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
本文报导含铝 AP/HTPB 复合推进剂的温度和压力敏感性理论研究结果。研究使用的是一种多重火焰模型(改进型小总体模型),这个模型考虑了铝粉对推进剂燃速的影响。报导的重点是温度和压力敏感性计算值与推进剂中氧化剂粒度和铝粉粒度、含量的关系。研究结果表明,粗粒度氧化剂低燃速推进剂,提高铝粉含量或使用较细的铝粉,可显著降低温度敏感性。在理论上压力敏感性(压力指数)也有同样倾向。为说明这类推进剂显示这种倾向的原因,对于所使用的模型进行了相当详细的讨论。  相似文献   

2.
六十年代以来,许多学者对以高氯酸铵为氧化剂的复合固体推进剂的燃烧进行了广泛研究,先后提出了许多关于这类推进剂的稳态燃烧模型,诸如粒状扩散火焰模型(GDF)、非均相反应模型(HR)、多重火焰燃烧模型(BDP)和小总体模型(PEM)等。小总体模型(PEM)是国外近年来发展的一种新的复合固体推进剂燃烧模型。模型中考虑了氧化剂粒度和粒度分布对燃烧特性的影响,改进的PEM还能模拟铝粉粒度和含量对燃烧的影响。本文着重介绍了PEM及其改进型的物理結构和预测燃速的方法。列出了一系列HTPB推进剂的燃速和压力指数预测值与实验数据的比较。可以认为两者是比较一致的,全铝PEM的预测值更接近于实验结果。  相似文献   

3.
本文阐述了利用透明窗发动机——高速摄影装置研究氧化剂粒度对复合固体推进剂侵蚀燃烧影响的方法。对基本配方相同,只是氧化剂粒度不同的三种复合固体推进剂进行了实验研究。经过测试、分析和计算,得出了不同氧化剂粒度推进剂的侵蚀效应对气流速度和压力的关系式,进而得出了氧化剂粒度的大小对复合固体推进剂侵蚀效应的影响关系。  相似文献   

4.
本文介绍了透明窗发动机测试系统,及其作为推进剂燃烧性能和绝热材料烧蚀性能研究实验装置的应用情况,例如测定氧化剂粒度对复合固体推进剂侵蚀燃烧的影响,高燃速无铝(少铝)推进剂的瞬态燃速及燃烧稳定性,热幅射对复合推进剂燃速的影响,以及燃速相关性研究的测试,绝热层烧蚀率的实验测试等,文中还展望了它的更为广阔的应用前景。  相似文献   

5.
用一种多分散的含铝固体推进剂的燃烧模型来确定具有单峰氧化剂分布的AP/Al/HTPB 推进剂的发动机温度敏感系数.铝粉含量在(0~20)%(质量百分比)之间变化,推进剂燃面与喷管喉面之比为250~500.结果表明,推进剂铝粉含量对发动机温度敏感系数的影响与发动机的燃喉面积比 K_H 有关.通常,增加燃喉面积比,发动机温度敏感系增至某一最大值,然后随发动机燃喉面积比的增加而减小.燃速系数和压强指数随初温和铝粉含量的变化,对发动机温度敏感系数有明显影响。而特征速度对温度敏感系数影响不大,但常常是增加的。  相似文献   

6.
利用固体火箭发动机离心试验方法,研究了低燃速(4 mm/s,4 MPa)、高铝粉含量的HTPB复合推进剂在过载情况下的燃烧加速度敏感性。试验分2组进行,第1组试验发动机平均工作压强为4 MPa,第2组为12 MPa,分别在0、5gn、8gn、15gn离心加速度条件下进行试验。通过对试验机理和试验数据分析发现,此类HTPB复合推进剂的燃速对过载加速度非常敏感。在较低加速度情况下,垂直于加速度的燃面处燃速出现了增加;同一压强(4 MPa)下,在0~15gn范围内,燃速与加速度近似呈线性关系。  相似文献   

7.
汪志清 《上海航天》1997,(5):9-12,17
研究了两种高燃速固体推进剂配方燃速的稳定性和细料度氧化剂(d50:7 ̄9μm,3 ̄5μm)粒度及其分布对推进剂燃速性能的影响。在此基础上,研制出燃速分别为30mm/s和38mm/s的两种高燃速丁羟固体推进剂。并应用于Φ208无喷管发动机的同心层装药。该推进剂具有良好的力学性能和能量特性,在较大压强(p=1960.1 ̄14710kPa)和温度(-40 ̄+50℃)范围内性能稳定、可靠。无喷管发动机的总  相似文献   

8.
采用推进剂静态燃烧性能测试和实验发动机动态实验等方法,研究了球形铝粉替代大量吕粉后推进剂燃速特性的变化情况。研究发现,含球形铝粉推进剂的燃速压强指数明显高于含非球形铝粉推进剂,而且含球形铝粉推进剂的低压燃速显著降低。经过对铝粉燃烧过程的研究,讨论了球形铝粉和非球形铝粉对推进剂燃烧过程的影响,并初步解释了含球形铝粉推进剂低压燃烧的下降原因。  相似文献   

9.
采用静态燃烧性能测试和实验发动机动态实验等方法。研究了球形铝粉替代非球形铝 后推进剂燃速特性的变化。研究发现,含球形铝粉推进剂的低压燃烧速显著降低,而燃速压强指数明显高于含非球形铝粉推进剂,讨论了球形和非球形铝粉对推进剂燃烧过程的影响,并初步解释了含球形铝粉推进剂低压燃速的下降原因。  相似文献   

10.
超细铝粉在Ap/HTPB推进剂中的燃烧研究   总被引:15,自引:2,他引:15  
研究了1.25μm和小于1μm的超细铝粉分别在Ap/HTPB系列推进剂中的燃烧特性,并与30μm的粗铝粉进行比较。认为超细铝粉在推进剂燃面上存在着凝聚和直接点火两种现象,这两种现象受氧化剂粒度、含量和种类的限制。实验结果表明,在某些配方中超细铝粉的燃烧性能明显优于粗铝粉,在以粗Ap为主的丁羟推进剂中合理使用超细铝粉,可以改善推进剂的燃烧性能,提高推进剂燃速,降低压强指数。本研究对于改善推进剂燃烧效率有很重要的现实意义。  相似文献   

11.
膏体推进剂和固体推进剂药浆稳态燃烧研究   总被引:1,自引:1,他引:1  
在固体推进剂BDP燃烧模型基础上,引入膏体推进剂燃烧效应这一新参数将模型推广于膏体推进剂和固体推进剂药浆燃烧研究,模型考虑了氧化剂粒度分布,组分配比,催化剂性有和膏体推进剂燃烧热效应等对燃速的影响,以及药浆固化有前后燃速差别,还有靶线法测量了某批次复合推进剂药浆固化前后燃速变化,论文结果可用于膏体推进剂的配方和性能预测,以及利用药浆燃速预示固化后推进剂燃速,监控固体推进剂制造质量。  相似文献   

12.
复合固体推进剂中铝粉凝聚海绵模型   总被引:4,自引:0,他引:4  
复合固体推进剂可看作充填氧化剂的海绵体,海绵层由粘合剂和铝粉组成,它按氧化剂表面积分数分配给各级份氧化剂。每颗氧化剂与其周围海绵层中粘合剂组成了特殊双元推进剂。由铝粉点火所需能量和双元推进剂提供的能量计算出离开燃面时铝凝滴粒径分布。计算结果与实验规律符合很好。此模型为固体火箭发动机性能预测提供了基本数据。  相似文献   

13.
采用水下声发射法测试了推进剂静态燃速,用线性回归法计算了推进剂燃速压强指数;研究了GAP/CL-20高能固体推进剂中增塑比及固体组分AP、CL-20、Al粉粒度等配方组成因素对燃烧性能的影响。研究结果表明,增塑比一定范围内的变化不会对推进剂燃烧性能产生显著影响,其燃速和燃速压强指数基本不变;CL-20粒度减小或AP粒度增加均会导致燃速不同程度的降低,Al粒度减小也会使燃速减小,但在达到一定程度后,燃速又增加;推进剂燃速压强指数随CL-20、Al粉粒度减小和AP粒度增加而减小,并对其燃烧性能的影响机制进行了简单分析。  相似文献   

14.
理论计算丁羟推进剂组分对凝聚相产物的影响,利用充氮气密闭装置收集含微米级铝粉丁羟推进剂燃烧残渣,采用扫描电镜(SEM)、X射线衍射(XRD)分别对残渣形貌及物相分析,并采用激光粒度仪测试燃烧产物平均粒径,研究铝粉粒度及含量、燃速催化剂含量、氧化剂级配等因素对微米级铝粉在推进剂燃烧过程团聚及燃烧效率影响。结果表明,丁羟推进剂理论生成凝聚相产物随铝粉含量增加而增加,随燃速催化剂含量增加而降低;当推进剂中铝粉含量由18%降至6%,推进剂燃烧残渣团聚颗粒尺寸由112.58μm降至79.03μm,残渣中单质铝相对含量由10.6%降至1.4%,铝粉燃烧效率由82.1%提高至97.1%;铝粉粒度由14μm增加至34μm,推进剂燃烧残渣团聚尺寸从65.24μm增加至92.14μm,推进剂燃烧残渣中单质铝相对含量由2.4%增加至5.1%,铝粉燃烧效率由95.0%降至89.5%;燃速催化剂含量由0.5%增加至2.0%,推进剂燃烧残渣团聚颗粒平均尺寸由112.56μm下降至70.12μm,残渣中单质铝含量由5.1%降至3.5%,铝粉燃烧效率由90.3%增加至93.3%;当粗粒径AP与细粒径AP比例由9∶1降至9∶4时,推进剂燃烧残渣团聚颗粒尺寸由234.21μm降至87.16μm,残渣中单质铝相对含量由8.9%降至2.9%,铝粉燃烧效率由84.4%提高至94.7%。  相似文献   

15.
根据呈正、负压力指数燃速特性的固体推进剂的稳态燃烧模型,导出了一个新的压力响应函数公式,它可用来说明燃速压力指数为零、正、负各类推进剂的压力耦合现象。燃烧中的推进剂被划分为两部份:一部份是由熔化了的粘合剂所覆盖的氧化剂表面与其相对应的粘合剂表面所组成,而另一部份则由未被覆盖的氧化剂表面同剩下的粘合剂表面组成。与以往的各类模型不同,在上述的前一部份燃烧表面的燃烧中,考虑了氧化剂在熔化粘合剂覆盖的条件下存在着反向气化和凝相反应,故使所得的压力响应函数的实部在推进剂稳态燃速的压力指数为零或负值时也可为正值。利用所获得的压力响应函数的表达式对试验用推进剂(S04-5A)作了定量计算,计算结果满意地说明了,负压力指数推进剂在氧化剂被熔化粘合剂大面积复盖时也存在不稳定燃烧的现象。这不仅克服了以往所有压力响应函数表达式均难以用于负压力指数推进剂的缺陷,而且也从一个侧面反映了呈正、负压力指数燃速特性的固体推进剂稳态燃烧模型的正确性。  相似文献   

16.
添加降速剂和调节RDX/AP含量是调节NEPE推进剂燃速的两种常用途径。采用水下声发射燃速测试仪、密闭燃烧器、BSF φ75 mm发动机等测试方法,研究了低燃速NEPE推进剂静态高压燃烧性能规律和发动机动态高压燃烧稳定性。研究发现,NEPE推进剂的中低压区燃速随着降速剂含量增大而显著降低,高压区燃速降低幅度相对较小,燃速-压强(r-p)曲线在15 MPa和45 MPa出现两个拐点,而且降低RDX含量对降低高压段燃速作用显著。BSF φ75 mm发动机试车结果表明,低RDX含量的C1配方(28%)最大工作压强不超过20 MPa,而高RDX含量(38%)的C4配方最大工作压强达到30 MPa。发动机稳定燃烧的最大压强随NEPE推进剂的燃速降低而下降,主要原因是低燃速推进剂铝粉燃烧效率降低使凝聚相燃烧产物含量和粒度增大。  相似文献   

17.
低压下镁铝富燃料固体推进剂燃烧性能研究   总被引:2,自引:0,他引:2  
通过调节氧化剂含量、粒度级配,或加入KP、用硼粉替换部分铗铝及改变催化剂含量,研究了镁铝富燃料固体推进剂燃速和压强指数的变化规律。研究结果表明,燃速随着AP、KP粒度的减小而增加;随AP含量的增加而增加;随催化剂含量的增加而增加;随KP含量的降低而增加。压强指数随AP粒度减小呈先升高后降低再升高的趋势;粒度不同的配方随AP含量增加,压强指数变化趋势不同;催化剂含量对压强指数的影响规律也同AP粒度有关;KP的粒度变化对压强指数几乎无影响。硼粉替换部分镁铝对燃速和压强指数的影响规律与氧化剂的粒度有关。  相似文献   

18.
近几十年来,推进剂系统的设计师们一直在关注着复合固体推进剂压力指数(n)的控制。本文讨论了影响此性能的各种因素及控制复合固体推进剂压力指数的各种方法。它们包括:(1)氧化剂的粒度、类型及含量;(2)金属类型;(3)氧化剂的包复;(4)弹道添加剂;(5)燃速调节剂及(6)粘合剂等影响。正如所预期的,这些方法均已用来调节压力指数,以适应特殊用途的战略和战术导弹所需的弹道性能。  相似文献   

19.
氧化剂和团聚硼粒度对富燃料推进剂燃速特性的影响   总被引:1,自引:0,他引:1  
考察了细AP和团聚硼含量对含硼富燃料推进剂燃速特性的影响.结果表明,随细AP含量和团聚硼含量的增大,推进剂燃速增加,燃速压强指数也呈增加趋势.同时,以BDP模型为基础,将硼粒度对推进剂燃速特性的影响引入燃速表达式,表达式表明细AP和团聚硼有利于提高氧化剂的燃烧表面积在燃面上的比例,从而有利于提高推进剂的燃速.  相似文献   

20.
火箭发动机内真实的推进剂燃速往往由于高温高压难以测量。为探讨燃速对于工况的依赖性.对水下应用的固体火箭发动机试验器的试验结果用最小二乘法进行了辨识。引用三种燃速公式进行辨识,得到了一种新型推进剂稳态燃速模型参数的最优辨识值。结果表明:指数式的辨识结果得到的残差最小,指数式是描述该新型推进剂燃速规律的合理格式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号