首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
It is still debated whether or not gravity can stimulate unicellular organisms. This question may be settled by revealing changes in the membrane potential in a manner depending on the gravitational forces imposed on the cell. We estimated the gravity-dependent membrane potential shift to be about 1 mV G−1 for Paramecium showing gravikinesis at 1–5 G, on the basis of measurements of gravity-induced changes in active propulsion and those of propulsive velocity in solutions, in which the membrane potential has been measured electrophysiologically. The shift in membrane potential to this extent may occur from mechanoreceptive changes in K+ or Ca2+ conductance by about 1% and might be at the limit of electrophysiological measurement using membrane potential-sensitive dyes. Our measurements of propulsive velocity vs membrane potential also suggested that the reported propulsive force of Paramecium measured in a solution of graded densities with the aid of a video centrifuge microscope at 350 G was 11 times as large as that for −29 mV, i.e., the resting membrane potential at [K+]o = 1 mM and [Ca2+]o = 1 mM, and, by extrapolation, that Paramecium was hyperpolarized to −60 mV by gravity stimulation of 100- G equivalent, the value corrected by considering the reduction of density difference between the interior and exterior of the cell in the graded density solution. The estimated shift of the membrane potential from −29 mV to −60 mV by 100- G equivalent stimulation, i.e., 0.3 mV G−1, could reach the magnitude entirely feasible to be measured more directly.  相似文献   

2.
The initial power outputs Po of pulsars are not yet well known, but these seem to follow approximately a distribution law N(> Po) ∝ Po−n where 0.5 ≤ n ≤ 1.0. It seems likely that Po ≥ 1038 ergs/sec. With these assumptions, we estimate that the DUMAND detector can record ≥ 103 high-energy (> 4 TeV) neutrino events in a four-month period per Galactic supernova; (in our Galaxy, these are estimated to occur at the rate of about 8 per century.) Neutrinos from supernova shells in the Virgo supercluster would be marginally detectable (one very bright supernova per decade at about 20 Mpc) if N(> Po) ∝ Po−0.5, but undetectable if N(> Po) ∝ Po−1. The diffuse flux summed over distant extragalactic supernovae is likely to be well below the detection threshold.  相似文献   

3.
Ariel VI observations of Cygnus X-2 have revealed a rather flat spectrum between 0.1 and 1.5 keV with variable emission at low energy. Of the two conflicting interpretations of this object in terms of i) a distant high-luminosity (Lx 1038 ergs s−1) binary and ii) a nearby low-luminosity (Lx 1035 ergs s−1) degenerate dwarf system, our measurements support the latter.  相似文献   

4.
Multiaperture photometry in V (5500Å), r (6738Å) and IV (10500Å) of 52 spirals in nearby clusters Virgo, Fornax and Grus and farther clusters Cancer, Zw 74-23 and Peg I in the redshift range up to 6000 Km s−1 was combined with HI width to derive three independant distances for each galaxy in these clusters.The plot between the mean distance of each cluster and its redshift, indicates the Hubble ratios of distant clusters Cancer, Zw 74-23 and Peg I are about 77 Km s−1 Mpc−1. Further, the Hubble ratios of distant clusters vary only from 76.3 to 78.9 Km s−1 Mpc−1 while those of nearby clusters Virgo, Fornax and Grus vary through a large range of 58.5 to 83.5 Km s−1 Mpc−1. We interpret these data by postulating a systematic motion toward Virgo for the Local Group.The best value for the global Hubble constant from farther and nearby clusters is derived as 74.3± 4 Km s−1 Mpc−1 and an average value of 289±60 Km s−1 for the infall velocity of the Local Group toward Virgo is also derived.  相似文献   

5.
Propagation of UHE protons through CMB radiation leaves the imprint on energy spectrum in the form of Greisen–Zatsepin–Kuzmin (GZK) cutoff, bump (pile-up protons) and dip. The dip is a feature in energy range 1 × 1018–4 × 1019 eV, caused by electron–positron pair production on CMB photons. Calculated for power-law generation spectrum with index γg = 2.7, the shape of the dip is confirmed with high accuracy by data of Akeno-AGASA, HiRes, Yakutsk and Fly’s Eye detectors. The predicted shape of the dip is robust: it is valid for the rectilinear and diffusive propagation, for different discreteness in the source distribution, for local source overdensity, deficit, etc. This property of the dip allows us to use it for energy calibration of the detectors. The energy shift λ for each detector is determined by minimum χ2 in comparison of observed and calculated dip. After this energy calibration the absolute fluxes, measured by AGASA, HiRes and Yakutsk detectors remarkably coincide in energy region 1 × 1018–1 × 1020 eV. Below the characteristic energy Ec ≈ 1 × 1018 eV the spectrum of the dip flattens for both diffusive and rectilinear propagation, and more steep galactic spectrum becomes dominant at E < Ec. The energy of transition Etr < Ec approximately coincides with the position of the second knee E2kn, observed in the cosmic ray spectrum. The dip-induced transition from galactic to extragalactic cosmic rays at the second knee is compared with traditional model of transition at ankle, the feature observed at energy 1 × 1019 eV.  相似文献   

6.
The Franco-Soviet Signe experiments on Venera 11 and Venera 12 allow a spectral analysis of gamma-ray bursts with a time resolution of 250 ms. Evidence is presented for i) short annihilation flashes of up to 20 photons cm−2s−1 and ii) rapid variations of the continuum, from a study of the intense 4 November 1978 event.  相似文献   

7.
Preliminary results are reported for gamma ray observations of the galactic center region made during a 15 hour balloon flight from Alice Springs, Australia on April 18, 1979. The observations were carried out with the UCR double-scatter gamma-ray telescope at energies of 1 to 30 MeV. The observations are compatible with a galactic source of approximately equal brightness along the region 300°<ℓII<60°. The energy distribution joins smoothly to previous spark chamber results at energies above 30 MeV and to scintillator results below 1 MeV. It appears to be a combination of nuclear gamma ray lines superimposed on a bremsstrahlung spectrum with a power law (1.3±.7) × 10−3 E(1.7±.2). The 12C* line at 4.4 MeV appears to be present with a significance of about 16σ. The flux in the line is (6±3) × 10−4photons cm−2s−1rad−1. The oxygen line at 6.1 MeV does not seem to appear significantly above background.  相似文献   

8.
On five occasions in 1977 and 1978, Cygnus X-1 was observed using the Low-Energy Detectors of the UCSD/MIT Hard X-Ray and Low-Energy Gamma-Ray Experiment on the HEAO-1 satellite. Rapid (0.08 s ≤ t ≤ 1000 s) variability was found in the 10 – 140 keV band. The power spectrum was “white” for 10−3 Hz < f ≤ 5 × 10−2 Hz and was proportional to f−1 for 5 × 10−2 Hz ≤ f < 3 Hz, indicating correlations on all time scales < 20 s. If the emission is produced by Comptonization of a soft photon flux in a hot cloud, the heating of the cloud cannot be constant; it must vary on time scales up to 20 seconds. A variable accretion rate could cause the observed effects.  相似文献   

9.
Extragalactic research studies by the Harvard/Smithsonian group with the Einstein Observatory have emphasized quasars and clusters of galaxies. More than 100 QSO's have been detected, including 20 serendipitous discoveries. The ratio of Lx/Lo for radio loud quasars is on the average 3 times that of radio quiet ones. QSO's with a large intrinsic optical luminosity have a smaller ratio of Lx/Lo. X-ray images of clusters of galaxies reveal a variety of morphological types which may correspond to different stages in their evolution. Several examples of bi-modal clusters have been discovered. An X-ray plume associated with M86 is apparently gas being stripped. From X-ray studies, a mass between 1.7 × 1013Mθ and 4.0 × 1013 Mθ has been derived for M87.  相似文献   

10.
The Mercury Magnetopsheric Orbiter (MMO) is one of the spacecraft of the BepiColombo mission; the mission is scheduled for launch in 2014 and plans to revisit Mercury with modern instrumentation. MMO is to elucidate the detailed plasma structure and dynamics around Mercury, one of the least-explored planets in our solar system. The Mercury Plasma Particle Experiment (MPPE) on board MMO is a comprehensive instrument package for plasma, high-energy particle, and energetic neutral particle atom measurements. The Mercury Ion Analyzer (MIA) is one of the plasma instruments of MPPE, and measures the three dimensional velocity distribution of low-energy ions (from 5 eV to 30 keV) by using a top-hat electrostatic analyzer for half a spin period (2 s). By combining both the mechanical and electrical sensitivity controls, MIA has a wide dynamic range of count rates for the proton flux expected around Mercury, which ranges from 106 to 1012 cm−2 s−1 str−1 keV−1, in the solar wind between 0.3 and 0.47 AU from the sun, and in both the hot and cold plasma sheet of Mercury’s magnetosphere. The geometrical factor of MIA is variable, ranging from 1.0 × 10−7 cm2 str keV/keV for large fluxes of solar wind ions to 4.7 × 10−4 cm2 str keV/keV for small fluxes of magnetospheric ions. The entrance grid used for the mechanical sensitivity control of incident ions also work to significantly reduce the contamination of solar UV radiation, whose intensity is about 10 times larger than that around Earth’s orbit.  相似文献   

11.
PAMELA is a satellite borne experiment designed to study with great accuracy cosmic rays of galactic, solar, and trapped nature in a wide energy range (protons: 80 MeV–700 GeV, electrons 50 MeV–400 GeV). Main objective is the study of the antimatter component: antiprotons (80 MeV–190 GeV), positrons (50 MeV–270 GeV) and search for antimatter (with a precision of the order of 10−8). The experiment, housed on board the Russian Resurs-DK1 satellite, was launched on June, 15th 2006 in a 350 × 600 km orbit with an inclination of 70°. The detector consists of a permanent magnet spectrometer core to provide rigidity and charge sign information, a Time-of-Flight system for velocity and charge information, a silicon–tungsten calorimeter and a neutron detector for lepton/hadron identification. An anticounter system is used off-line to reject false triggers coming from the satellite. In self-trigger mode the calorimeter, the neutron detector and a shower tail catcher are capable of an independent measure of the lepton (e+ + e) component up to 2 TeV. In this work we focus on the first months of operations of the experiment during the commissioning phase.  相似文献   

12.
In order to experimentally investigate the Marangoni flow of low-Prandtl-number fluids in a liquid bridge geometry under the condition of small Marangoni numbers close to the critical Marangoni numbers Mac1 and Mac2, the formation of a liquid bridge of silver was attempted. The available temperature difference between the upper and lower rods to obtain a small Marangoni number, such as Ma = 50, was calculated for a 5 mm high liquid bridge for several molten metals. For molten silver, the possible temperature difference was estimated to be 16 K, whereas, for molten silicon, this was 0.38 K, which is unrealistic for the purposes of experiments. For silver, a free surface can be obtained in the wide range of oxygen partial pressures, whereas, for molten silicon, the available oxygen partial pressure range is very small; equilibrium oxygen partial pressure for SiO2 formation is as low as 1.1 × 10−14 Pa. A liquid bridge of molten silver was successfully prepared and temperature oscillation was observed; the estimated Marangoni number was 160 and oscillation frequency was 0.26 Hz.  相似文献   

13.
Imaging X-ray observations of normal spiral galaxies show extended and complex x-ray emission, easily explainable with a complex of unresolved X-ray sources. A variety of nuclear sources, including starburst nuclei and miniature active nuclei are seen. The total (0.5–3.0 keV) luminosities are in the range of Lx 1038 - 1040 erg s−1. The X-ray luminosity is linearly correlated with the optical luminosity. It is also correlated with the radio continuum luminosity at 21cm, but following a power law relationship with an exponent α = 0.6. This latter relationship might have implications on the Population I X-ray binary formation models and/or on the origin of the radio continuum emission in spiral galaxies  相似文献   

14.
Based on the spectrophotometric data, by decomposition of the observed continuum, the power - law continuum characteristics of the central source are obtained. The behaviour of both electron temperature Te and density ne in the Narrow - Line Region (NLR) of NGC 7469 is discussed on the thermal and ionization equilibria calculations. Te in NLR of the Sy1 galaxies are higher than the Sy2 ones, and the possible explanation is the lack of the dense (ne 1010 cm−3) zone close to the central source in the Sy2 galaxies.  相似文献   

15.
Europe is one of the major partners building the International Space Station (ISS) and European industry, together with ESA, is responsible for many station components including the Columbus Orbital Facility, the Automated Transport Vehicle, two connecting modules and the European Robotic Arm. Together with this impressive list of contributions there is a strong desire within the ESA Member States to benefit from this investment by utilizing the unique capabilities of the ISS to perform world-class science. XEUS is one of the astronomical applications being studied by ESA to utilize the capabilities of the ISS. XEUS will be a long-term X-ray observatory with an initial mirror area of 6 m2 at 1 keV that will be expanded to 30 m2 following a visit to the ISS. The 1 keV spatial resolution is expected to be 2–5″ half-energy-width. XEUS will consist of separate detector and mirror spacecraft (MSC) aligned by active control to provide a focal length of 50 m. A new detector spacecraft, complete with the next generation of instruments, will also be added after visiting the ISS. The limiting 0.1–2.5 keV sensitivity will then be 4 × 10−18 erg cm−2 s−1, around 200 times better than XMM-Newton, allowing XEUS to study the properties of the hot baryons and dark matter at high redshift.  相似文献   

16.
In this article, we study fast shocks at CIR boundaries during an extended interval of 15 consecutive major high speed solar wind streams in 1992–1993. Ulysses was 4–5 AU from the sun. The Abraham-Schrauner shock normal method and the Rankine-Hugoniot relations were used to determine fast shock directions and speeds. Out of 33 potential CIR shocks, 14 were determined to be fast forward shocks (FSs) and 14 were fast reverse shocks (RSs). Of the remaining 5 events, 2 were forward waves and 3 were reverse waves. CIR edges at latitudes below ∼30o were, for the most part, bounded by fast magnetosonic shocks. The forward shocks were generally quasi-perpendicular (average θnBo = 67o). The reverse shocks were more oblique (average θnBo = 52o), but they extended to all angles. Both FSs and RSs had magnetosonic Mach numbers ranging from 1 to 5 or 6. The average Mach numbers were 2.4 and 2.6 for FSs and RSs, respectively. The shock Mach numbers were noted to generally decrease with increasing latitude. The non-shock events or waves were noted to occur preferentially at high (∼−30° to −35°) heliolatitudes where stream-stream interactions were presumably weaker. These results are consistent with expectations, indicating the general accuracy of the Abraham-Schrauner technique.  相似文献   

17.
The CALorimetric Electron Telescope, CALET, mission is proposed for the observation of high-energy electrons and gamma-rays at the Exposed Facility of the Japanese Experiment Module on the International Space Station. The CALET has a capability to observe the electrons (without separation between e+ and e) in 1 GeV–10 TeV and the gamma-rays in 20 MeV–several TeV with a high-energy resolution of 2% at 100 GeV, a good angular resolution of 0.06 degree at 100 GeV, and a high proton-rejection power of nearly 106. The CALET has a geometrical factor of 1 m2sr, and the observation period is expected for more than three years. The very precise measurement of electrons enables us to detect a distinctive feature in the energy spectrum caused from WIMP dark matter in the Galactic halo. The excellent energy resolution of CALET, which is much better than GLAST or air Cherenkov telescopes over 10 GeV, enables us to detect gamma-ray lines in the sub-TeV region from WIMP dark matter annihilations. The CALET has, therefore, a unique capability to search for WIMP dark matter by the hybrid observations of electrons and gamma-rays.  相似文献   

18.
Almost 10 years of solar submillimeter observations have shown new aspects of solar activity, such as the presence of rapid solar spikes associated with the launch of coronal mass ejections and an increasing submillimeter spectral component in flares. We analyse the singular microwave–submillimeter spectrum of an M class solar flare on 20 December, 2002. Flux density observations measured by Sun patrol telescopes and the Solar Submillimeter Telescope are used to build the radio spectrum, which is fitted using Ramaty’s code. At submillimeter frequencies the spectrum shows a component different from the microwave classical burst. The fitting is achieved proposing two homogeneous sources of emission. This theoretical fitting is in agreement with differential precipitation through a magnetically asymmetric loop or set of loops. From a coronal magnetic field model we infer an asymmetric magnetic structure at the flare location. The model proposed to quantify the differential precipitation rates due to the asymmetry results in a total precipitation ratio Q2/Q1≈104–105, where Q1(Q2) represents the total precipitation in the loop foot with the high (low) magnetic field intensity. This ratio agrees with the electron total number ratio of the two sources proposed to fit the radio spectrum.  相似文献   

19.
This paper is a summary of our recent researches on the applications of a weighted average method determining times of solar cycle extrema in the prediction of solar activity. Some correlation coefficients among the parameters in solar cycle according to this definition are higher than those according to the conventional definition. The descending time is found to be correlated (r = −0.77) with the ascending time 3 cycles earlier. The amplitude of solar cycle is found to be correlated (r = −0.77) with the max–max solar cycle length 2 cycles earlier. The ascending time is found to be correlated (r = −0.72) with the amplitude. A newly defined parameter called effective duration is found to be well correlated (r = 0.86) with the amplitude 5 cycles later. These correlations suggest that earlier cycles should influence later ones. The next (24th) solar cycle is estimated to start in March 2007 ± 7 months, reach its maximum in January 2011 ± 14 months, with a size of 150 ± 22, larger than those from some correlations according to the conventional definition.  相似文献   

20.
Median values of ionosonde hF data acquired at Ibadan (Geographic:7.4°N, 3.9°E, Magnetic: dip 6°S, and magnetic declination, 3°W), Nigeria, West Africa, have been used to determine vertical ion drift (electric field) characteristics in the postsunset ionosphere in the African region during a time of high solar activity (average F10.7 −208). The database spans from January and December 1958 during the era of International Geophysical Year (IGY) for geomagnetic quiet conditions. Bimonthly averaged diurnal variations patterns are very similar, but differ significantly in magnitude and in the evening reversal times. Also, monthly variations of F-region vertical ion drift reversal times inferred from the time of hF maximum indicates early reversal during equinoxes and December solstice months except for the month of April. Late reversal is observed during the June solstice months. The equatorial evening prereversal enhancement in vertical ion drift (Vzp) occurs largely near 1900 LT with typical values 20–45 m/s. Comparison of Ibadan ionosonde Vzp with the values of prereversal peak velocity reported for Jicamarca (South America), Kodaikanal (India), and Scherliess and Fejer global model show considerable disparity. The changes of postsunset peak in virtual height of F-layer (hFP) with prereversal velocity peak Vzp are anti-correlated. Investigation of solar effects on monthly values of Vzp and hFP revealed that these parameters are independent of monthly averaged solar flux intensity during quiet-time sunspot maximum conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号