首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 176 毫秒
1.
干涉配合铆接对疲劳强度的影响   总被引:1,自引:0,他引:1  
通过试验,研究了干涉配合铆接试件相对于普通铆接试件疲劳强度的增益,估算了冠状铆钉干涉配合的填充作用。研究结果表明:在中寿命区,干涉配合铆接的疲劳强度比普通铆接的疲劳强度提高约25%。通过理论计算与试验结果的对比。建议冠状铆钉干涉配合的填充系数可取为0.474。  相似文献   

2.
当航空器结构在航线使用过程中出现疲劳裂纹损伤时,通常在裂纹尖端打止裂孔进行临时性修理。通过理论分析和计算及试验分析,研究了止裂孔尺寸对止裂效果的影响。结果表明,当航空器结构出现疲劳裂纹损伤时,采用5.57~7.14mm直径的止裂孔进行止裂修理,止裂效果较好;当止裂孔直径为6.35mm时,止裂效果最好。  相似文献   

3.
2524-T3铝合金被认为是目前综合性能最好的飞机蒙皮用铝合金,研究其在疲劳载荷状态下的力学性能对材料的安全使用具有重要的意义。通过疲劳试验研究2524-T3铝合金铆钉填充锪窝孔试样在一种典型应力比、不同载荷水平下的疲劳性能,得到铆钉填充锪窝孔试样疲劳裂纹寿命的p-S-N曲线,同时借助扫描电镜观察疲劳裂纹的萌生和扩展行为。研究结果表明:2524-T3铝合金铆钉填充锪窝孔试样具有良好的抗疲劳损伤性能;在指定疲劳寿命条件为3×106周次下,试样在室温轴向疲劳加载条件下的条件疲劳极限为108MPa;疲劳断口由疲劳源区、裂纹扩展区及瞬断区组成。  相似文献   

4.
采用无裂纹缺陷试件进行疲劳试验得到试件的疲劳寿命,同时利用考虑了记忆特性的局部应力应变法对试件的疲劳寿命进行定量分析。主要讨论了材料的记忆特性与可用性系数, 采用Neuber近似解法求出局部应力应变,然后按照Manson-Coffin公式求出各级载荷的疲劳寿命和对应的疲劳损伤,采用:Miner疲劳累积损伤理论估算疲劳寿命,最后讨论了超载对裂纹形成寿命和裂纹扩展寿命的影响。  相似文献   

5.
本文通过对航空发动机冷端盘燕尾槽子构件及其材料钛合金TC11 的小裂纹扩展行为和疲劳的试验研究,燕尾槽子构件小裂纹的应力强度因子权函数解的分析研究,并利用塑性诱导的New m an 裂纹闭合模型,建立起从裂纹开始萌生的燕尾槽槽底疲劳全寿命预测模型。结果表明,该模型预测子构件的疲劳寿命的误差在工程所允许的二倍寿命以内  相似文献   

6.
结构连接件疲劳损伤容限全寿命设计方法   总被引:2,自引:0,他引:2  
通过对结构疲劳裂纹形成寿命和裂纹扩展寿命的研究,提出了连接件疲劳全寿命的计算方法。本文分别研究了连接件的裂纹形成寿命和扩展寿命,研究了试片裂纹形成寿命与扩展寿命之间的关系,提出了用试片的S-N曲线确定连接件裂纹形成寿命的修正方法。通过典型连接件的计算给出了连接件的全寿命,并与试验结果进行了对比,得到了较好的吻合。本文希望通过典型连接件全寿命研究提出一种更合理、可靠的连接件疲劳分析的工程方法,经试验结果验证这种方法是可行的。  相似文献   

7.
铆接薄壁梁疲劳寿命计算与试验分析   总被引:5,自引:0,他引:5  
用液压伺服疲劳试验机,对铆接薄壁纯弯梁进行了疲劳寿命试验,给出了试验结果。用应力严重系数法,计算了铆接薄壁梁的疲劳寿命。疲劳寿命计算结果与试验结果相差较大。分析认为,给出的钉孔填充系数偏高,不适于用来计算铆接薄壁结构的疲劳寿命。经过分析和研究,给出了适于计算铆接薄壁结构疲劳寿命的较合理的钉孔填充系数。还探讨了各种改进 Neuber 法对计算铆接薄壁结构疲劳寿命的适用性。  相似文献   

8.
在工程设计中常采用复合材料壁板与金属材料骨架的混合结构。本文对复合材料与金属材料混合结构的寿命展开了研究,进行了疲劳试验并用全寿命方法计算了金属结构裂纹形成寿命和裂纹扩展寿命。通过对疲劳试验件的断口反推与计算结果得到了较好的吻合。  相似文献   

9.
一种适用于应力疲劳和应变疲劳的通用寿命模型   总被引:2,自引:1,他引:1  
本文通过应变分布对寿命的影响函数分析,导出了一种适用于应力疲劳和应变疲劳的通用寿命模型。通过应变分布影响系数把应变疲劳与应力疲劳联系起来。该方法不仅可用于构件从应力疲劳到应变疲劳的各类疲劳寿命预测,还可用于构件的疲劳试验模拟件设计。文中列举了各种典型材料的典型应力集中试件的算例。   相似文献   

10.
对TA15钛合金板材进行氩弧焊对接焊后,加工成光滑疲劳试件进行R=0.5,0.06的高周疲劳SN曲线测试。试验后对试样断口进行扫描电镜(SEM)分析发现,疲劳源大多位于焊接区域的气孔或夹杂等焊接缺陷处。以焊接处微观结构缺陷尺寸作为初始裂纹尺寸,采用基于裂纹闭合的全寿命预测模型,以焊接区域不同位置的长裂纹扩展速率曲线作为基线,利用J.C.Newman的FASTRANII软件对焊接接头试件的疲劳寿命进行预测,发现采用焊缝边缘处的长裂纹扩展曲线预测结果与试验结果吻合较好。  相似文献   

11.
使用液压伺服疲劳试验机,在程序块载荷谱作用下对铆接铝合金薄壁纯弯梁进行了疲劳寿命试验,并给出了疲劳寿命试验结果。采用应力严重系数法对该纯弯梁进行了疲劳寿命计算。通过对试验结果和计算结果的对比分析及研究,给出了采用应力严重系数法计算铆接薄壁结构疲劳寿命时的钉孔填充作用系数的合理选用值。  相似文献   

12.
Al-Li-S4是新一代铝锂合金,常被用作机身材料,而铆接结构在飞机各个重要受力结构中也具有广泛的应用.为了研究Al-Li-S4铝锂合金铆接结构的疲劳性能,通过试验统计得到两种铆接结构的细节疲劳额定值(DFR),并借助扫描电镜观察其疲劳裂纹的萌生和扩展行为.结果表明:Al-Li-S4铝锂合金铆接搭接结构的DFR值为102.24 MPa,铆钉填充锪窝孔连接结构的DFR值为169.41 MPa;Al-Li-S4铝锂合金疲劳断口的分析表征其具有良好的抗疲劳损伤性能.研究结果可为新型民用飞机选材、疲劳设计和寿命评估提供参考.  相似文献   

13.
 本文详细地分析了LY_(12)CZ铝合金铆接件微动损伤的微观特征以及各种搭接表面处理方法对疲劳强度的影响。试验结果表明:对搭接表面采用恰当的处理方法,铆接件的疲劳寿命一般均有不同程度的提高,其中,胶铆结构的采用是防止铆接件产生微动损伤的有效措施。当轴向交变应力σ_(max)=125MPa以下时,胶铆试件的疲劳寿命比干涉铆接的疲劳寿命提高60%以上。  相似文献   

14.
制孔工艺对紧固孔疲劳性能的影响   总被引:6,自引:0,他引:6  
分别在传统制孔工艺和Winslow制孔工艺下,对7050T7351铝合金材料的双犬骨连接件疲劳试验结果进行对比与可靠性分析;基于当量初始裂纹(EIFS)理论和符合性判据,计算不同制孔工艺下的原始疲劳质量;采用体视显微镜和扫描电镜对疲劳断口进行分析;对Winslow制孔工艺强化机理进行了定性的探讨。研究表明:改进工艺后,紧固孔的疲劳寿命均有所提高,分散性降低,疲劳强度增加;紧固孔的当量初始裂纹小于0.125mm,符合抗疲劳耐久性设计的要求;裂纹形核的位置不变,裂纹扩展区疲劳条带变窄。  相似文献   

15.
多孔多裂纹平板的疲劳裂纹扩展试验与分析方法   总被引:2,自引:2,他引:0  
李政鸿  徐武  张晓晶  余音 《航空学报》2018,39(7):221867-221867
飞机结构广布疲劳损伤是目前大型客机损伤容限设计与分析的难点。通过试验研究了典型多孔多裂纹2024-T3铝合金平板的裂纹扩展行为。试验结果表明:相邻孔边裂纹之间的相互干扰明显降低了共线多裂纹平板的疲劳裂纹扩展寿命。就本文研究的典型多孔板,所有孔边都出现了等长裂纹这一极端情况,其裂纹扩展寿命是单孔平板孔边裂纹扩展寿命的10%左右。本文采用Eshelby夹杂理论和权函数法给出了典型多孔多裂纹问题的应力强度因子近似解析解,并结合Paris裂纹扩展公式预测疲劳裂纹扩展寿命。与采用有限元法获得应力强度因子并预测多孔多裂纹板的疲劳裂纹扩展寿命进行对比,对比结果表明:采用解析解和有限元解获得的应力强度因子预测的疲劳裂纹扩展寿命与试验结果吻合良好;相比于有限元法,本文的应力强度因子解法简单、高效,将有助于飞机结构多位置损伤(MSD)的疲劳裂纹扩展寿命预测分析。  相似文献   

16.
本文介绍了孔的挤胀销棒应力压印工艺,进行了压印之后孔周围的残余应力和压印前后孔的疲劳寿命计算,并通过计算结果说明了挤胀销棒应力压印对结构疲劳寿命的影响。  相似文献   

17.
针对飞机提高疲劳寿命问题,在飞机的主要承力部位如起落架梁、下壁板的螺栓孔处进行挤压强化,可以大大提高飞机的强度,对飞机延寿具有极其重要意义。在实际生产过程中,挤压孔的合格率一直较低,通过大量的数据试验和详细的分析研究,查找出提高螺栓孔挤压强化合格率的瓶颈问题,对飞机生产单位提高产品质量具有重要参考价值。  相似文献   

18.
T700复合材料层合板拉-拉疲劳性能   总被引:1,自引:0,他引:1  
对T700/9368光滑板及两种孔径的含孔层合板进行了拉-拉疲劳试验,测量试件刚度随加载周期的衰减规律,并利用超声波C扫描和破坏断口分析方法,对T700复合材料的疲劳损伤机理进行分析。根据弹性模量法建立了层合板疲劳累积损伤模型,并从平均应力准则概念出发,建立了含孔层合板的疲劳累积损伤模型。将试验数据运用最小二乘法拟合后代入疲劳损伤模型,得到T700/9368光滑板及含孔板疲劳寿命的具体计算公式,应用公式预测了在不同应力水平下的层合板疲劳寿命,与试验结果的吻合良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号