首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
对地球静止轨道(GeosynchronousOrbit,GEO)卫星在轨加注燃料以延长其工作寿命蕴含着巨大的经济价值,而执行加注任务的服务航天器在轨组网方案直接影响在轨加注任务全局。文章以GEO卫星为在轨服务对象,开展了提供加注服务的航天器最优组网方案研究。提出了1个燃料存储站加N个加注飞行器的服务航天器体系架构,燃料存储站承载大量燃料,长期在轨稳定运行;加注飞行器机动运行,执行对GEO卫星加注任务,当加注飞行器燃料不足时,返回燃料存储站获取燃料。燃料存储站的质量、运行轨道,加注飞行器的数目、质量与运行轨道、对GEO卫星提供加注的加注飞行器任务分配等是组网方案研究的重点,建立了以对GEO卫星加注任务的响应时间短、服务系统成本低为互斥评价准则的服务航天器组网方案的多目标优化设计数学模型,分析了组网方案优化问题的求解方法及流程,采用多目标粒子群算法对服务航天器组网方案进行了优化设计,通过分析一组非支配优化设计结果对于2个互斥评价准则的平衡性,提出了1个燃料存储站加4~6个加注飞行器的服务航天器最优组网方案。  相似文献   

2.
在轨服务技术因在航天器故障修复、寿命延长及军事方面有重大辅助作用而越来越受到各航天大国的重视,作为在轨服务技术重要组成部分的在轨燃料补给技术也越来越受到关注。文章针对圆轨道航天器在轨燃料加注任务,将空间燃料站技术与多目标在轨加注技术相结合,对基于燃料站的在轨加注模式进行了研究,提出了一种基于聚类分析的在轨加注任务调度及优化算法。通过对双脉冲轨道转移问题的求解与分析,获得了轨道转移速度增量和轨道参数之间的关系,在此基础上分析了圆轨道航天器在轨加注任务调度问题,并根据调度模型的变量和约束关系,建立了圆轨道航天器在轨加注任务多目标规划模型,并采用免疫遗传算法对加注任务调度空间燃料站选址问题进行了研究。以30颗目标航天器的在轨加注任务为例进行了数值仿真,并由燃料消耗的计算结果验证了算法的有效性。  相似文献   

3.
在轨服务技术因在航天器故障修复、寿命延长及军事方面有重大辅助作用而越来越受到各航天大国的重视,作为在轨服务技术重要组成部分的在轨燃料补给技术也越来越受到关注。文章针对圆轨道航天器在轨燃料加注任务,将空间燃料站技术与多目标在轨加注技术相结合,对基于燃料站的在轨加注模式进行了研究,提出了一种基于聚类分析的在轨加注任务调度及优化算法。通过对双脉冲轨道转移问题的求解与分析,获得了轨道转移速度增量和轨道参数之间的关系,在此基础上分析了圆轨道航天器在轨加注任务调度问题,并根据调度模型的变量和约束关系,建立了圆轨道航天器在轨加注任务多目标规划模型,并采用免疫遗传算法对加注任务调度空间燃料站选址问题进行了研究。以30颗目标航天器的在轨加注任务为例进行了数值仿真,并由燃料消耗的计算结果验证了算法的有效性。  相似文献   

4.
针对PVT方法计算剩余燃料偏差大影响卫星在轨任务规划的问题,提出一种基于输入参数偏差分析的卫星剩余燃料估计和修正方法.在推导剩余燃料估计误差传播方程和比对记账法、PVT法计算偏差的基础上,开展PVT法计算剩余燃料的误差源和输入偏差分析,对卫星剩余燃料进行修正.在仅考虑剩余燃料影响的前提下,建立地球静止轨道(GEO)卫星在轨燃料消耗预测模型,预测GEO卫星剩余寿命.实际工程应用表明:该方法在卫星剩余燃料计算出现较大偏差时,能够较好地修正计算偏差,可为卫星在轨任务规划提供技术支撑及参考借鉴.  相似文献   

5.
面向海洋观测的成像卫星是一种轨道较高的可见光对地观测卫星,主要用于探测海上船舶活动以及监测海洋环境参数等。对地观测卫星任务规划问题是一个复杂的组合优化问题,通过分析面向海洋观测的成像卫星工作特点及约束条件,建立了一种考虑多数传模式共存的数学模型,提出了一种基于最大收益损失比的卫星任务规划算法。试验结果表明该方法能够有效解决面向海洋观测的成像卫星任务规划问题。  相似文献   

6.
张磊 《深空探测学报》2019,6(4):391-397
面向月球采样返回任务分析需求,对月面上升段的轨迹优化及燃料消耗影响因素进行了研究。基于上升器运动模型,建立以燃料消耗最优为目标考虑入轨约束的轨迹优化模型,通过Gauss伪谱法和序列二次规划求解上升过程最优推力方向。改变运动模型中的初始推重比、入轨约束中的目标轨道参数,根据轨迹优化结果得到对应的燃料消耗,分析了这些因素对上升器燃料消耗的影响。针对上升器非共面起飞的问题,提出了上升偏航、升交点调整、倾角调整3种方案,从燃料消耗的角度分析了各方案的适用情况,为未来工程应用提供参考。  相似文献   

7.
基于冲量变轨原理的地球同步卫星有限推力变轨策略   总被引:1,自引:0,他引:1  
  推力有限时,地球同步轨道卫星在远地点变轨的弧段很长,会导致较多的燃料消耗。基于冲量变轨原理,研究了地球同步轨道卫星远地点有限推力多次变轨问题,提出了具有星下点约束的最省燃料变轨方案,给出了每次变轨的推力方向和点火起止时刻及最优中间过渡轨道。仿真结果验证了该方案的有效性。  相似文献   

8.
载人小行星探测目标选择与轨道优化设计   总被引:1,自引:1,他引:0       下载免费PDF全文
针对2020-2040年载人小行星探测任务,研究了探测目标选择与轨道优化设计问题。首先,针对已编目的近地小行星,综合考虑绝对星等、燃料消耗等多方面因素与约束,给出了适合载人探测任务的候选小行星序列;然后,构建了载人小行星探测任务轨道的设计模型,采用参数优化算法对探测轨道进行了设计;进一步,为了获得最优探测轨道,利用主矢量原理对探测轨道进行了优化。该研究可为载人小行星探测任务设计提供有价值的参考。  相似文献   

9.
1 引言 □□根据美国国防部高级研究计划局的合同,由波音公司牵头的研制团队,正在加快研制称为"轨道快车"(Orbital Express)的自主机器人卫星轨道服务系统.2006年9月将发射验证系统,2010年部署实用操作系统,构成在轨加注燃料、维修和卫星升级等置换卫星部件能力.加注燃料能延长卫星寿命,增加发射裕度,提高卫星机动性.利用设计成轨道置换单元(ORU)的硬件包在轨置换部件,使在轨卫星能得到维修或升级.验证卫星的主要任务是验证轨道交会和接近操作、软件捕获、标准接口、机器人、流体加注器和轨道置换单元的置换器功效.经过验证和对用户需求调查,最终实用系统的服务范围将有一定规模的扩大.  相似文献   

10.
火卫一周期准卫星轨道及入轨分析   总被引:1,自引:1,他引:0  
围绕火卫一的准卫星轨道(QSOs)因其具有良好的稳定性,是火卫一探测任务最为实用的轨道。在平面圆型限制性三体问题模型下,利用庞加莱截面和KAM环迭代方法探究了准卫星轨道的周期轨道族,并给出不同能量准卫星周期轨道的初始条件。针对火卫一周期准卫星轨道入轨,提出一种转移轨道设计方法:对准卫星周期轨道调整速度后进行反向积分,直至离开火卫一邻近区域,从而得到由火星环绕轨道向火卫一周期准卫星轨道的转移轨道,并调整转移轨道参数对燃料与时间消耗进行优化。研究结果表明,当周期准卫星轨道能量处于特定区间时,存在特定速度脉冲区间,可利用火卫一引力实现较少燃料消耗的轨道转移;在该速度脉冲区间中,通过选取较小的速度脉冲,可缩短转移时间。   相似文献   

11.
文章基于Lawden方程对椭圆参考轨道的近程最优交会问题进行了研究,并提出了一种混合遗传算法求解最优近程交会问题。首先在一定假设条件下给出了目标在椭圆参考轨道的近距离相对运动模型——Lawden方程,构建了多脉冲最优交会问题模型并进行了理论分析。性能指标选为轨道交会过程中燃料消耗和时间消耗加权最小的多目标优化指标,优化参数为脉冲大小和脉冲施加时刻,终端状态受到相对位置和相对速度的约束。然后介绍了具有较强全局和局部寻优能力的混合遗传算法。最后以四脉冲为例进行仿真计算。仿真结果表明,是否考虑第一次脉冲位置,总燃料消耗变化不明显。因此,追踪航天器一旦捕获到目标信息即可施加第一次脉冲。仿真结果还证明了混合遗传算法在求解最优交会问题时的有效性。因此,混合遗传算法对基于Lawden方程的椭圆参考轨道近程最优交会问题的求解可行。  相似文献   

12.
将太阳能离子推力器应用于卫星的推进系统,完成从地球同步转移轨道(GTO)到地球同步轨道(GEO)转移任务;建立任务模型,设计基于纬度幅角的反馈控制策略,对发动机开关时间进行优化.采用图形处理器(GPU, graphic processing unit)加速的遗传算法(GA,genetic algorithm)对卫星转移轨道任务进行优化设计.仿真结果表明:通过对该闭环控制器的定常参数进行优化,可将轨道导引至目标轨道附近;采用太阳能离子推力器可减少燃料消耗.基于GPU加速的遗传算法,可缩短算法运算时间.  相似文献   

13.
针对载人登月短期全球访问任务,月面上升过程存在上升舱与返回舱异面交会问题。以减小调面机动燃料消耗为目标,利用三垂线定理给出上升轨道与目标轨道的最小平面夹角(楔角)求解公式,考虑应急返回任务需求,以降低整个任务期间最坏的平面夹角为目标,给出全月面到达着陆轨道与上升轨道倾角求解方法。仿真结果表明,所提方法计算简单,精度高,可为载人登月任务设计和分析提供参考。  相似文献   

14.
<正>美国轨道工厂公司(Orbit Fab)于2023年5月25日宣布,将通过“燃料库”(fuel depot)有效载荷,在2025年为美国天军(USSF)地球同步轨道(GEO)小卫星泰特拉-5(Tetra-5)提供商业在轨加注服务。“燃料库”载荷将配备名为“快速连接燃料转移接口”(RAFTI)的标准加注接口,为同样配备RAFTI接口的客户航天器泰特拉-5卫星在轨加注约50kg肼燃料。该任务标志着在轨加注技术正逐步迈向实用化、商业化。在轨加注服务是指在太空中利用服务航天器为目标航天器(客户航天器)进行气、液推进剂补给的在轨操作,是未来在轨服务领域的重要组成部分。文章将梳理研究轨道工厂公司在轨加注服务发展情况,并提出几点研究启示。  相似文献   

15.
研究了两航天器协同轨道机动(双主动)完成近距离交会任务的最优控制问题。在考虑航天器姿态变化、对接口位置及路径约束的情况下,构建了完整的6自由度、26状态的双主动最优交会数学模型。利用高斯伪谱法分别将燃料总消耗最少和交会时间最短两种最优问题离散为大型非线性规划问题,而后应用SNOPT软件包进行了求解。在此基础上通过大量数值计算分析总结了不同初始参数对最小燃料消耗和最短交会时间的影响规律,并与主被动交会形式进行了对比。结果表明,当两航天器质量接近时,双主动交会通常可明显减少燃料消耗,或缩短交会时间;而当质量差距较大时,双主动最优交会逐渐退化为主被动最优交会。  相似文献   

16.
基于分段常值的全电推进GEO卫星制导策略   总被引:1,自引:0,他引:1       下载免费PDF全文
电推进技术因其比冲高的技术特点在GEO轨道转移中应用可大大减少燃料质量,提高有效载荷质量比,延长任务寿命等。针对全电推进GEO卫星入轨的轨迹优化和制导问题,首先利用间接法获得小推力燃料最优GEO轨道转移的数值解,提出一种多项式曲线拟合最优轨迹的方法,多项式曲线形式简单,可作为参考轨道在星上存储和使用。在多项式参考轨道的基础上,建立了一种分段常值推力跟踪参考轨道的闭环制导策略,在常值推力条件下,轨道要素控制量与控制力有解析关系,简化了制导律设计;将多圈轨道转移问题分解为多个单圈轨道优化问题。结果显示,本文提出的分段常值跟踪制导策略跟踪精度高,和最优轨道相比多消耗7%的燃料。本制导策略控制结构简单,易于工程实施。  相似文献   

17.
卫星群机动是航天器发展的一个方向.针对编队卫星群的Lambert机动问题,采用Gim-Alfriend矩阵建立了包含中心轨道根数和摄动项的群卫星的相对运动模型,设计了转移轨道上的卫星群队形协同保持的脉冲控制策略.应用遗传算法对编队卫星群轨道机动问题进行了优化,优化指标分别为卫星群协同变轨过程中总燃料消耗最少或燃料均衡分配最小.分析了群机动过程中燃料消耗的影响因素.算例结果表明遗传算法可以很好地应用于编队卫星群机动问题.  相似文献   

18.
主矢量法在空间近距离拦截优化中的应用   总被引:1,自引:0,他引:1  
重点研究了在固定时间内利用主矢量原理判断近距离冲量拦截轨道燃料消耗是否最优的问题, 并对非最优情况提出了优化策略. 根据轨道动力学理论, 建立了近距离空间拦截轨道的数学模型. 根据主矢量理论给出了判断冲量拦截是否最优的理论依据, 并给出了优化方法. 利用仿真算例证实了优化的有效性. 通过对不同时间的空间拦截燃料消耗进行仿真比较分析, 提出了燃料消耗最优的拦截策略.   相似文献   

19.
针对月面起飞后的快速交会远程导引任务,设计一种基于高斯摄动方程的双脉冲制导策略.首先推导了轨道修正的控制方程,然后结合远程导引的时间约束方程推导出了双脉冲制导的非线性方程组.为了获得速度增量最小解,设计规划变量,将非线性方程组的求解问题转化为非线性规划问题,并通过序列二次规划算法对最优解进行求解.为了提高制导精度,采用迭代修正的方法对制导过程进行优化.最后,通过数据仿真,对基于高斯摄动方程的双脉冲制导策略的正确性进行校验,并与Lambert直接转移策略进行了比对.仿真结果表明,相比于Lambert直接转移制导策略,基于高斯摄动方程的双脉冲制导策略可以有效地完成快速交会远程导引任务,制导精度和燃料消耗得到了改善.  相似文献   

20.
以地球同步轨道卫星转移轨道设计为背景,针对全化学推进燃料消耗大和全电推进转移时间长的问题,开展了化学 电混合推进转移轨道优化设计与特性分析。首先,讨论了轨道倾角和近地点幅角变化对混合推进转移轨道的影响。研究表明,在混合推进优化设计中需要将轨道倾角作为优化变量之一。然后,以近地点半径、远地点半径、轨道倾角为优化变量生成搜索网格,得到过渡轨道集。针对每条过渡轨道,构建化学推进转移段和电推进转移段。其中化学推进段采用单圈兰伯特转移解算,电推进段采用混合法优化。最后,以燃料消耗和转移时间为指标,在搜索域内开展解算分析,研究了混合推进轨道在整个搜索域内的变化趋势。该方法可以提供具有不同燃料消耗和转移时间的混合推进转移解集,拓宽了解空间,可供轨道设计人员根据任务约束灵活选用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号