首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
On January 20, 2005, 7:02–7:05 UT the Aragats Multidirectional Muon Monitor (AMMM) located at 3200 m a.s.l. registered enhancement of the high energy secondary muon flux (threshold ∼5 GeV). The enhancement, lasting for 3 min, has statistical significance of ∼4σ and is related to the X7.1 flare seen by the GOES, and very fast (>2500 km/s) CME seen by SOHO, and the Ground Level Enhancements (GLE) #69 detected by the world-wide network of neutron monitors and muon detectors. The energetic and temporal characteristics of the muon signal from the AMMM are compared with the characteristics of other monitors located at the Aragats Space-Environmental Center (ASEC) and with other neutron and muon detectors. Since secondary muons with energies >5 GeV are corresponding to solar proton primaries with energies 20–30 GeV we conclude that in the episode of the particle acceleration at 7:02–7:05 UT 20 January 2005 solar protons were accelerated up to energies in excess of 20 GeV.  相似文献   

2.
A study of daily variations of secondary Cosmic Rays (CR) is performed using data on charged and neutral CR fluxes. Particle detectors of Aragats Space-Environmental Center (ASEC), Space Environmental Viewing and Analysis Network (SEVAN) and neutron monitors of the Neutron Monitor Database (NMDB) are used. ASEC detectors continuously register various species of secondary CR with different threshold energies and incident angles. NMDB joins data of 12 Eurasian neutron monitors. Data at the beginning of the 24th solar activity cycle are used to avoid biases due to solar transient events and to establish a benchmark for the monitoring of solar activity in the new started solar cycle.  相似文献   

3.
After the major modernization of the data acquisition electronics of the particle detectors operated at Aragats Space Environmental Center (ASEC) calculations of the barometric coefficients of all the monitors were performed in the beginning of the 24th solar activity cycle. The barometric coefficients of particle detectors located at altitudes of 1000 m, 2000 m and 3200 m a.s.l. measuring various secondary cosmic ray fluxes were compared with theoretical expectations and monitors operated on different longitudes and latitudes. The barometric coefficients were also calculated for the several neutron monitors of recently established Eurasian database (NMDB) and SEVAN particle detector networks. The latitude and altitude dependencies of the barometric coefficients were investigated, as well as the dependence of coefficients on energy of the primary particles.  相似文献   

4.
Cosmic Ray research on Mt. Aragats began in 1934 with the measurements of East–West anisotropy by the group from Leningrad Physics-Technical Institute and Norair Kocharian from Yerevan State University. Stimulated by the results of their experiments in 1942 Artem and Abraham Alikhanyan brothers organized a scientific expedition to Aragats. Since that time physicists were studying Cosmic Ray fluxes on Mt. Aragats with various particle detectors: mass spectrometers, calorimeters, transition radiation detectors, and huge particle detector arrays detecting protons and nuclei accelerated in most violent explosions in Galaxy. Latest activities at Mt. Aragats include Space Weather research with networks of particle detectors located in Armenia and abroad, and detectors of Space Education center in Yerevan.  相似文献   

5.
Particle detectors of worldwide networks are continuously measuring various secondary particle fluxes incident on Earth surface. At the Aragats Space Environmental Center (ASEC), the data of 12 cosmic ray particle detectors with a total of ∼280 measuring channels (count rates of electrons, muons and neutrons channels) are sent each minute via wireless bridges to a MySQL database. These time series are used for the different tasks of off-line physical analysis and for online forewarning services. Usually long time series contain several types of errors (gaps due to failures of high or low voltage power supply, spurious spikes due to radio interferences, abrupt changes of mean values of several channels or/and slowly trends in mean values due to aging of electronics components, etc.). To avoid erroneous physical inference and false alarms of alerting systems we introduce offline and online filters to “purify” multiple time-series. In the presented paper we classify possible mistakes in time series and introduce median filtering algorithms for online and off-line “purification” of multiple time-series.  相似文献   

6.
To improve the physical understanding of the Forbush decreases (FD) and to explore the Space Weather drivers, we need to measure as much geospace parameter as possible, including the changing fluxes of secondary cosmic rays. At the Aragats Space Environmental Center (ASEC) are routinely measured the neutral and charged fluxes of secondary cosmic rays. Each of species has different most probable energy of primary “parent” proton/nuclei. Therefore, the energy range of the Galactic Cosmic Rays (GCR) affected by Interplanetary Coronal Mass Ejection (ICME) can be effectively estimated using data of the ASEC monitors. We presented relations of the magnitude of FD observed in different secondary particle fluxes to the most probable energy of the primary protons. We investigate the correlations between the magnitude of FD with the size, speed, density and magnetic field of the ICME. We demonstrate that the attenuation of the GCR flux incident on the Earth’s atmosphere due to passing of the ICME is dependent on the speed and size of the ICME and the magnetic field strength.  相似文献   

7.
The Space Environment Viewing and Analysis Network (SEVAN) aims to improve the fundamental research on particle acceleration in the vicinity of the sun, on space weather effects and on high-energy physics in the atmosphere and lightning initiation. This new type of a particle detector setup simultaneously measures fluxes of most species of secondary cosmic rays, thus being a powerful integrated device for exploration of solar modulation effects and electron acceleration in the thunderstorm atmosphere. The SEVAN modules are operating at the Aragats Space Environmental Center (ASEC) in Armenia, in Croatia, Bulgaria, Slovakia, the Czech Republic (from 2017) and in India. In this paper, we present the most interesting results of the SEVAN network operation during the last decade. We present this review on the occasion of the 10th anniversary of the International Heliophysical Year in 2007.  相似文献   

8.
The Aragats Solar Environment Center provides real time monitoring of different components of secondary cosmic ray fluxes. We plan to use this information to establish an early warning alert system against extreme, very large solar particle events with hard spectra, dangerous for satellite electronics and for the crew of the Space Station. Neutron monitors operating at altitude 2000 and 3200 m are continuously gathering data to detect possible abrupt variations of the particle count rates. Additional high precision detectors measuring muon and electron fluxes, along with directional information are under construction on Mt. Aragats. Registered ground level enhancements, in neutron and muon fluxes along with correlations between different species of secondary cosmic rays are analyzed to reveal possible correlations with expected times of arrival of dangerous solar energetic particles.  相似文献   

9.
This paper evaluates orbit accuracy and systematic error for altimeter satellite precise orbit determination on TOPEX, Jason-1, Jason-2 and Jason-3 by comparing the use of four SLR/DORIS station complements from the International Terrestrial Reference System (ITRS) 2014 realizations with those based on ITRF2008. The new Terrestrial Reference Frame 2014 (TRF2014) station complements include ITRS realizations from the Institut National de l’Information Géographique et Forestière (IGN) ITRF2014, the Jet Propulsion Laboratory (JPL) JTRF2014, the Deutsche Geodätisches Forschungsinstitut (DGFI) DTRF2014, and the DORIS extension to ITRF2014 for Precise Orbit Determination, DPOD2014. The largest source of error stems from ITRF2008 station position extrapolation past the 2009 solution end time. The TRF2014 SLR/DORIS complement impact on the ITRF2008 orbit is only 1–2 mm RMS radial difference between 1992–2009, and increases after 2009, up to 5 mm RMS radial difference in 2016. Residual analysis shows that station position extrapolation error past the solution span becomes evident even after two years, and will contribute to about 3–4 mm radial orbit error after seven years. Crossover data show the DTRF2014 orbits are the most accurate for the TOPEX and Jason-2 test periods, and the JTRF2014 orbits for the Jason-1 period. However for the 2016 Jason-3 test period only the DPOD2014-based orbits show a strong and statistically significant margin of improvement. The positive results with DTRF2014 suggest the new approach to correct station positions or normal equations for non-tidal loading before combination is beneficial. We did not find any compelling POD advantage in using non-linear over linear station velocity models in our SLR & DORIS orbit tests on the Jason satellites. The JTRF2014 proof-of-concept ITRS realization demonstrates the need for improved SLR+DORIS orbit centering when compared to the Ries (2013) CM annual model. Orbit centering error is seen as an annual radial signal of 0.4 mm amplitude with the CM model. The unmodeled CM signals show roughly a 1.8 mm peak-to-peak annual variation in the orbit radial component. We find the TRF network stability pertinent to POD can be defined only by examination of the orbit-specific tracking network time series. Drift stability between the ITRF2008 and the other TRF2014-based orbits is very high, the relative mean radial drift error over water is no larger than 0.04 mm/year over 1993–2015. Analyses also show TRF induced orbit error meets current altimeter rate accuracy goals for global and regional sea level estimation.  相似文献   

10.
Accurate debris and meteoroid flux models are crucial for the design of manned and unmanned space missions. For the most abundant particle sizes smaller than a few millimetres, knowledge of the populations can only be gained from in situ detectors or the analysis of retrieved space hardware. The measurement of impact flux from exposed surfaces improves with increased surface area and exposure time.A post-flight impact investigation was initiated by the European Space Agency to record and analyse the impact fluxes and any potential resulting damage on the two flexible solar arrays of the Hubble Space Telescope. The arrays were deployed during the first Hubble Space Telescope servicing mission in December 1993 and retrieved in March 2002. They have a total exposed surface area of roughly 120 m2, including 42 m2 covered with solar cells. This new Hubble post-flight impact study follows a similar activity undertaken after the retrieval of one of the first solar arrays, in 1993. The earlier study provided the first opportunity for a numerical survey of damage to exposed surfaces from more than 600 km altitude, and of impacts from particles larger than 1 mm. The results have proven very valuable in validation of important flux model regimes. The second set of Hubble solar arrays has again provided an unrivalled opportunity to measure the meteoroid and debris environment, now sampled during a long interval in low Earth orbit, and to identify changes in the space debris environment since the previous survey. The retrieved solar array wings exhibit thousands of craters, many of which are visible to the naked eye. A few hundred impacts have completely penetrated the 0.7 mm thick array. The largest impact features are about 7–8 mm in diameter. The cover glass of the solar cells is particularly well suited to the recognition of small impact features by optical and electron microscopy. In this paper, we present the first results of the impact survey. Data upon the abundance of craters of specific measured size ranges are plotted as cumulative flux curves, and compared to the results of model predictions. The most significant change to the particle flux since 1993 is a decrease in the small debris population.  相似文献   

11.
The hysteresis effect for small energies of galactic cosmic rays is due to two effects. The first is the same as for neutron monitor energies – the delay of the interplanetary processes responsible for cosmic ray modulation with respect to the initiating solar processes, according to the effective velocity of solar wind and shock waves propagation. Then, the observed cosmic ray intensity is connected to the solar activity variations during many months before the time of cosmic ray measurement. The second is caused by the time delay of small energy cosmic ray diffusion from the boundary of modulation region to the Earth’s orbit. The model describing the connection between solar activity variation and cosmic ray convection–diffusion global modulation for neutron monitor energies is here developed by taking into account also the time-lag of the small energy particle diffusion in the Heliosphere. We use theoretical results on drifts and analytically approximate the dependences of drifts from tilt angle, and take into account the dependence from the sign of primary particles, and from the sign of polar magnetic field (A > 0 or A < 0). The obtained results are applied on proton and alpha-particle satellite data. We analyze satellite 5-min data of proton fluxes with energies >1 MeV, >2 MeV, >5 MeV, >10 MeV, >30 MeV, >50 MeV, >60 MeV, >100 MeV, and in intervals 10–30 MeV, 30–60 MeV, and 60–100 MeV during January 1986–December 1999. We exclude periods with great cosmic ray increases caused by particle acceleration in solar flare events. Then, we determine monthly averaged fluxes, as well as 5-month and 11-month smoothed data. We analyze also satellite 5-min data on alpha-particle fluxes in the energy intervals 60-160 MeV, 160–260 MeV and 330–500 MeV during January 1986–May 2000. We correct observation data for drifts and then compare with what is expected according to the convection–diffusion mechanism. We assume different dimensions of the modulation region (by the time propagation X0 of solar wind from the Sun to the boundary of modulation region), for X0 values from 1 to 60 average months, by one-month steps. For each value of X0 we determine the correlation coefficient between variations of expected and observed cosmic ray intensities (the estimation of cosmic ray intensities values is given in Section 3 by Eq. (9), and the determination of correlation and regression coefficients in Section 3 by Eq. (8)). The dimension of modulation region is determined by the value of X0 max, for which the correlation coefficient reaches the maximum value. Then the effective radial diffusion coefficient and residual modulation in small energy region can be estimated.  相似文献   

12.
Fluorescence detectors of ultra high energy cosmic rays (UHECR) allow to record not only the extensive air showers, initiated by the UHECR particles, but also to detect light, produced by meteors and by the fast dust grains. It is shown that the fluorescence detector operated at the mountain site can register signals from meteors with kinetic energy threshold of about 25 J (meteor mass  5 × 10−6 g, velocity  3 × 106 cm/s). The same detector might be used for recording of the dust grains of smaller mass (of about 10−10 g) but with velocity 109 cm/s, close to the light velocity (sub-relativistic dust grains). The light signal from a sub-relativistic dust grain is expected in much shorter time scale (∼0.001 s), in comparison with the meteor signal (∼0.1–1 s), and much longer than duration of the UHECR signals (tens of μs). The fluorescence detector capable to register various phenomena: from meteors to UHECR – should have a variable pixel and selecting system integration time. A study of the new phenomenon of sub-relativistic grains will help to understand the mechanism of particle and dust grain acceleration in astrophysical objects (in SN explosions, for example).  相似文献   

13.
The deleterious effects of accelerated heavy ions as component of the space radiation environment on living cells are of increasing importance for long duration human space flight activities. The most important aspect of such densely ionizing particle radiation is attributed to the type and quality of biological damage induced by them. This issue is addressed by investigating cell inactivation and mutation induction at the Hprt locus (coding for hypoxanthine-guanine-phosphoribosyl-transferase) of cultured V79 Chinese hamster cells exposed to densely ionizing radiation (accelerated heavy ions with different LETs from oxygen to gold, specific energies ranging from 1.9 to 69.7 MeV/u, corresponding LET values range from 62 to 13,223 keV/μm) and to sparsely ionizing radiation (200 kV X-rays). 30 spontaneous, 40 X-ray induced and 196 heavy ion induced 6-thioguanine resistant Hprt mutant colonies were characterized by Southern technique using the restriction enzymes EcoRI, PstI and BglII and a full length Hprt cDNA probe isolated from the plasmid pHPT12. Restriction patterns of the spontaneous Hprt mutants were indistinguishable from the wild type pattern, as these mutants probably contain only small deletions or even point mutations in the Hprt locus. In contrast, the overall spectrum of heavy ion induced mutations revealed a majority of partial or total deletions of the Hprt gene. With constant particle fluence (3 × 106 particles/cm2) the quality of heavy ion induced mutations in the Hprt locus depends on physical parameters of the beam (atomic number, specific energy, LET). This finding suggests a relationship between the type of DNA damage and track structure. The fraction of mutants with severe deletions in the Hprt locus after exposure to oxygen ions increases from 65% at 60 keV/μm up to a maximum (100%) at 300 keV/μm and declines with higher LET values to 75% at 750 keV/μm. With heavier ions (Ca- and Au-ions) and even higher LET-values this mutant fraction decreases to 58% at 13,200 keV/μm. Heavy ion induced DNA break points in the Hprt locus are not randomly distributed.  相似文献   

14.
The high repetition rate satellite laser ranging (SLR) measurements to the fast spinning satellites contain a frequency signal caused by the rotational motion of the corner cube reflector (CCR) array. The spectral filter, developed here, is based on the Lomb algorithm, and is tested with the simulated and the observed high repetition rate SLR data of the geodetic satellite Ajisai (spin period ∼2 s). The filter allows for the noise elimination from the SLR data, and for identification of the returns from the single CCRs of the array – even for the low return rates. Applying the spectral filter to the simulated SLR data increases the S/N ratio by a factor 40–45% for all return rates. Filtering out the noise from the observed data strengthens the frequency signal by factor of ∼25 for the low return rates, which significantly helps to determine the spin phase of the satellite. The spectral filter is applied to the Graz SLR data and the spin rates of Ajisai are determined by two different methods: the frequency analysis and the phase determination of the spinning retroreflector array.The analysis of more than 8 years of the Graz SLR measurements indicates an exponential spin rate trend: f = 0.67034 exp(−0.0148542 Y) [Hz], RMS = 0.085 mHz, where Y is the year since launch. The highly accurate spin rate information demonstrates periodic changes related to the precession of the orbital plane of Ajisai, as it determines the amount of energy received by the satellite from the Sun. The rate of deceleration of Ajisai is not constant: the half life period of the satellite’s spin oscillates around 46.7 years with an amplitude of about 5 years.  相似文献   

15.
We study energetic particle transport in a magnetic field configuration which models the solar wind magnetic turbulence plus the background field. A power-law Fourier amplitude is used for the fully 3D turbulence model, and in order to model anisotropic turbulence, the constant amplitude surfaces in k space are ellipsoids. The turbulence correlation lengths parallel (perpendicular) to the background magnetic field l (l) are varied in a wide range, and proton energies from 1 MeV to 10 GeV are assumed. Considering propagation on a distance corresponding to 1 AU, it is found that transport parallel and perpendicular to the background field heavily depends on the turbulence anisotropy, that is on the ratio l/l. The spatial distribution of energetic particle follows the shape of magnetic flux tube up to about 10 MeV, while for larger energies the structure of the magnetic flux tube is progressively washed out. The scatterplots of particle distribution show intermittent, non Gaussian structures for l  l (quasi slab turbulence), while a more diffusive, Gaussian structure is obtained for l  l (quasi 2D turbulence). The long time behavior of transport shows that anomalous (subdiffusive perpendicular and superdiffusive parallel) transport regimes are obtained for l  l, while Gaussian diffusive transport is obtained for both l  l and the isotropic turbulence case.  相似文献   

16.
Current status of scientific ballooning in Japan is reviewed. First, I describe successful application of balloon technologies to construct a vessel of transparent plastic film, to contain about 1000 tons of liquid scintillator in Kamioka Liquid Scintillator Anti-Neutrino Detector (KamLAND). KamLAND is a project to study neutrino oscillation phenomena, by detecting anti-neutrinos produced in distant nuclear reactors. Next, I describe high altitude balloons developed by the ISAS balloon group. They developed balloons made from ultra-thin polyethylene film, producing a balloon of volume 60,000 m3 which successfully reached an altitude of 53 km in 2002. This is a world record, the greatest altitude that a balloon has ever achieved. ISAS is applying further effort to develop balloons with even thinner films, to achieve a higher altitude than 53 km. Other recent activities by the ISAS balloon group are briefly described.I also review scientific ballooning projects now operating in Japan, particularly focusing on the Balloon-Borne Experiment with a Superconducting Spectrometer (BESS) program. This is a US–Japan collaborative program that has carried out very precise measurements of antiprotons, protons and other components in primary cosmic rays, as well as measuring the fluxes of atmospheric muons and other components. The results of these observations give us important information to improve our understanding of the production mechanism of antiprotons observed in the primary cosmic rays. The data are also important for analysis of atmospheric neutrino events observed by Super-Kamiokande and other ground-based neutrino detectors. Future prospects of BESS and other balloon-borne cosmic-ray research programs are also presented.  相似文献   

17.
Using high-resolution Hα, CaII 8542 Å and FeI 6302.5 Å Stokes spectral data obtained simultaneously with THEMIS in 2002 September, we have analyzed the spectra and the characteristics of a two-ribbon microflare (MF). The hard X-ray emission provides evidence of non-thermal particle acceleration in the microflare. The two-ribbons are located on either sides of the magnetic polarity inversion line. The non-thermal characteristics mainly appeared at the outer edges of the flare ribbons. It indicates that the instantaneous magnetic reconnection and the particle acceleration mainly took place at the outer edges of the flare ribbons. Using the Hα and CaII 8542 Å line profiles and the non-LTE calculation, we obtain the semi-empirical atmospheric model for the bright kernel of the MF. The result indicates that the temperature enhancement in the chromosphere is about 2000–2500 K.  相似文献   

18.
Novel measurements of the seasonal variability in mesospheric temperature at low-latitudes have been obtained from Maui, Hawaii (20.8°N, 156.2°W) during a 25-month period from October 2001 to January 2004. Independent observations of the OH (6, 2) Meinel band (peak height ∼87 km) and the O2 (0–1) atmospheric band emission (∼94 km) were made using the CEDAR Mesospheric Temperature Mapper. The data revealed a coherent oscillation in emission intensity and rotational temperature with a well-defined periodicity of 181 ± 7 days. The amplitude of this oscillation was determined to be ∼5–6 K in temperature and ∼8–9% in intensity for both the OH and O2 data sets. In addition, a strong asymmetry in the shape of the oscillation was also observed with the spring maximum significantly larger than the fall peak. These data provide new evidence in support of a semi-annual-oscillation in mesospheric temperature (and airglow emission intensities) and help quantify its seasonal characteristics.  相似文献   

19.
Winds from a meteor radar at Wuhan (30.6°N, 114.5°E) and a MF radar at Adelaide (35°S, 138°E) are used to study the 16-day waves in the mesosphere and lower thermosphere (MLT). The height range is 78–98 km at Wuhan and 70–98 km at Adelaide. By comparison, it is found that the zonal components at both sites are generally larger than the meridional ones, and eastward motion of the zonal background winds is favorable for the 16-day waves penetration to the MLT region. The zonal maximum amplitude appears in the autumn (September–October) around 86–98 km at Wuhan and in the winter months and early spring (July–October) around 72–82 km at Adelaide. Differences are found in wave amplitudes and time of appearance between the two years of 2002 and 2003. In 2003, the intensity of the wave amplitudes is relatively smaller than that for 2002 at both sites. The summer 16-day waves are comparatively weaker at Adelaide in both years, but stronger in 2002 at Wuhan near the mesopause and the lower thermosphere (86–98 km). The strong summer waves at Wuhan may come from the winter southern hemisphere.  相似文献   

20.
Huge magnetic clouds of plasma emitted by the Sun dominate intense geomagnetic storm occurrences and simultaneously they are correlated with variations of spectra of particles and nuclei in the interplanetary space, ranging from subtermal solar wind ions till GeV energy galactic cosmic rays. For a reliable and fast forecast of Space Weather world-wide networks of particle detectors are operated at different latitudes, longitudes, and altitudes. Based on a new type of hybrid particle detector developed in the context of the International Heliophysical Year (IHY 2007) at Aragats Space Environmental Center (ASEC) we start to prepare hardware and software for the first sites of Space Environmental Viewing and Analysis Network (SEVAN). In the paper the architecture of the newly developed data acquisition system for SEVAN is presented. We plan to run the SEVAN network under one-and-the-same data acquisition system, enabling fast integration of data for on-line analysis of Solar Flare Events. An Advanced Data Acquisition System (ADAS) is designed as a distributed network of uniform components connected by Web Services. Its main component is Unified Readout and Control Server (URCS) which controls the underlying electronics by means of detector specific drivers and makes a preliminary analysis of the on-line data. The lower level components of URCS are implemented in C and a fast binary representation is used for the data exchange with electronics. However, after preprocessing, the data are converted to a self-describing hybrid XML/Binary format. To achieve better reliability all URCS are running on embedded computers without disk and fans to avoid the limited lifetime of moving mechanical parts. The data storage is carried out by means of high performance servers working in parallel to provide data security. These servers are periodically inquiring the data from all URCS and storing it in a MySQL database. The implementation of the control interface is based on high level web standards and, therefore, all properties of the system can be remotely managed and monitored by the operators using web browsers. The advanced data acquisition system at ASEC in Armenia was started in November, 2006. The reliability of the multi-client service was proven by continuously monitoring neutral and charged cosmic ray particles. Seven particle monitors are located at 2000 and 3200 m above sea level at a distance of 40 and 60 km from the main data server.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号