首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
The Special Purpose Dextreous Manipulator (Dextre) is the latest addition to the on-orbit segment of the Mobile Servicing System (MSS); Canada's contribution to the International Space Station (ISS). Launched in March 2008, the advanced two-armed robot is designed to perform various ISS maintenance tasks on robotically compatible elements and on-orbit replaceable units using a wide variety of tools and interfaces. The addition of Dextre has increased the capabilities of the MSS, and has introduced significant complexity to ISS robotics operations. While the initial operations concept for Dextre was based on human-in-the-loop control by the on-orbit astronauts, the complexities of robotic maintenance and the associated costs of training and maintaining the operator skills required for Dextre operations demanded a reexamination of the old concepts. A new approach to ISS robotic maintenance was developed in order to utilize the capabilities of Dextre safely and efficiently, while at the same time reducing the costs of on-orbit operations. This paper will describe the development, validation, and on-orbit demonstration of the operations concept for ground-based tele-robotics control of Dextre. It will describe the evolution of the new concepts from the experience gained from the development and implementation of the ground control capability for the Space Station Remote Manipulator System; Canadarm 2. It will discuss the various technical challenges faced during the development effort, such as requirements for high positioning accuracy, force/moment sensing and accommodation, failure tolerance, complex tool operations, and the novel operational tools and techniques developed to overcome them. The paper will also describe the work performed to validate the new concepts on orbit and will discuss the results and lessons learned from the on-orbit checkout and commissioning of Dextre using the newly developed tele-robotics techniques and capabilities.  相似文献   

2.
Dextre: Improving maintenance operations on the International Space Station   总被引:1,自引:0,他引:1  
The Special Purpose Dexterous Manipulator (SPDM), known as “Dextre”, is currently slated to launch in February 2008 for deployment on the International Space Station (ISS) as the final component of Canada's Mobile Servicing System (MSS). Dextre's primary role on the Space Station is to perform repair and replacement (R&R) maintenance tasks on robotically compatible hardware such as Orbital Replaceable Units (ORUs), thereby eventually easing the burden on the ISS crew.This burden on the on-orbit crew translates practically into crew time being a limited resource on the ISS, and as such, finding ways to assist the crew in performing their tasks or offloading the crew completely when appropriate is a bonus to the ISS program. This is already accomplished very effectively by commanding as many non-critical robotics tasks as possible, such as powering up and free-space maneuvering of the Space Station Remote Manipulator System (SSRMS), known as “Canadarm2”, from the Ground.Thus, beyond its primary role, and based on an increasing clarity regarding the challenges of external maintenance on the ISS, Dextre is being considered for use in a number of ways with the objective of improving ISS operations while reducing and optimizing the use of crew time through the use of ground control for various tasks, pre-positioning hardware, acting as a temporary storage platform to break an Extra Vehicular Activity (EVA) day into manageable timelines, and extending the physical reach and range of the Canadarm2.This paper discusses the planned activities and operations for Dextre an rationale for how these will help optimize the use of crew resources on the ISS.  相似文献   

3.
Redundant space manipulators, including Space Station Remote Manipulator System (SSRMS), Special Purpose Dexterous Manipulator (SPDM) and European Robotic Arm (ERA), have been playing important roles in the construction and maintenance of International Space Station (ISS). They all have 7 revolute joints arranged in similar configurations, and are referred to as SSRMS-type manipulators.  相似文献   

4.
Dave Anderson 《Acta Astronautica》1999,44(7-12):593-606
To sustain the rate of extravehicular activity (EVA) required to assemble and maintain the International Space Station, we must enhance our ability to plan, train for, and execute EVAs. An underlying analysis capability has been developed to ensure EVA access to all external worksites as a starting point for ground training, to generate information needed for on-orbit training, and to react quickly to develop contingency EVA plans, techniques, and procedures. This paper describes the use of computer-based EVA worksite analysis techniques for EVA worksite design. EVA worksite analysis has been used to design 80% of EVA worksites on the U.S. portion of the International Space Station. With the launch of the first U.S. element of the station, EVA worksite analysis is being developed further to support real-time analysis of unplanned EVA operations. This paper describes this development and deployment of EVA worksite analysis for International Space Station (ISS) mission support.  相似文献   

5.
The European Space Agency (ESA) contribution to the International Space Station (ISS) goes much beyond the delivery of hardware like the Columbus Laboratory, its payloads and the Automated Transfer Vehicles. ESA Astronauts will be members of the ISS crew. ESA, according to its commitments as ISS international partner, will be responsible to provide training on its elements and payloads to all ISS crewmembers and medical support for ESA astronauts. The European Astronaut Centre (EAC) in Cologne has developed over more than a decade into the centre of expertise for manned space activities within ESA by contributing to a number of important co-operative spaceflight missions. This role will be significantly extended for ISS manned operations. Apart from its support to ESA astronauts and their onboard operations, EAC will have a key role in training all ISS astronauts on ESA elements and payloads. The medical support of ISS crew, in particular of ESA astronauts has already started. This paper provides an overview on status and further plans in building up this homebase function for ESA astronauts and on the preparation towards Training Readiness for ISS crew training at EAC, Cologne. Copyright 2001 by the European Space Agency. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. Released to IAF/IAA/AIAA to publish in all forms.  相似文献   

6.
The Microgravity Research Program (MRP) participated aggressively in Phase 1 of the International Space Station Program using the Russian Mir Space Station. The Mir Station offered an otherwise unavailable opportunity to explore the advantages and challenges of long duration microgravity space research. Payloads with both National Aeronautics and Space Agency (NASA) and commercial backing were included as well as cooperative research with the Canadian Space Agency (CSA). From this experience, much was learned about long-duration on-orbit science utilization and developing new working relationships with our Russian partner to promote efficient planning, operations, and integration to solve complexities associated with a multiple partner program.

This paper focuses on the microgravity research conducted onboard the Mir space station. It includes the Program preparation and planning necessary to support this type of cross increment research experience; the payloads which were flown; and summaries of significant microgravity science findings.  相似文献   


7.
To meet the significant increase in EVA demand to support assembly and operations of the International Space Station (ISS), NASA and industry have improved the current Shuttle Extravehicular Mobility Unit (EMU), or "space suit", configuration to meet the unique and specific requirements of an orbital-based system. The current Shuttle EMU was designed to be maintained and serviced on the ground between frequent Shuttle flights. ISS will require the EMUs to meet increased EVAs out of the Shuttle Orbiter and to remain on orbit for up to 180 days without need for regular return to Earth for scheduled maintenance or refurbishment. Ongoing Shuttle EMU improvements have increased reliability, operational life and performance while minimizing ground and on-orbit maintenance cost and expendable inventory. Modifications to both the anthropomorphic mobility elements of the Space Suit Assembly (SSA) as well as to the Primary Life Support System (PLSS) are identified and discussed. This paper also addresses the status of on-going Shuttle EMU improvements and summarizes the approach for increasing interoperability of the U.S. and Russian space suits to be utilized aboard the ISS.  相似文献   

8.
The results of analysis of microdisturbances on the International Space Station (ISS) at performing various dynamic operations are presented. Docking of transfer manned and cargo vehicles Progress and Soyuz to various docking modules of the ISS, docking of the Space Shuttle Discovery, the ISS orbit correction and, also, disturbances at “EVA” (Extra Vehicular Activity) operations during astronauts working on the external ISS surface are considered. The results of measuring microaccelerations by sensors of both Russian and American segments are analyzed.  相似文献   

9.
Gerstenmaier W 《Acta Astronautica》2004,54(11-12):777-778
This introductory address provides a brief overview and a timeline for construction of the International Space Station, beginning with the July 2000 launch of the Russian Service Module, Zvezda, and ending with the Mission STS-112.  相似文献   

10.
Extravehicular activity training and hardware design consideration   总被引:3,自引:0,他引:3  
Preparing astronauts to perform the many complex extravehicular activity (EVA) tasks required to assemble and maintain Space Station will be accomplished through training simulations in a variety of facilities. The adequacy of this training is dependent on a thorough understanding of the task to be performed, the environment in which the task will be performed, high-fidelity training hardware and an awareness of the limitations of each particular training facility. Designing hardware that can be successfully operated, or assembled, by EVA astronauts in an efficient manner, requires an acute understanding of human factors and the capabilities and limitations of the space-suited astronaut. Additionally, the significant effect the microgravity environment has on the crew members' capabilities has to be carefully considered not only for each particular task, but also for all the overhead related to the task and the general overhead associated with EVA. This paper will describe various training methods and facilities that will be used to train EVA astronauts for Space Station assembly and maintenance. User-friendly EVA hardware design considerations and recent EVA flight experience will also be presented.  相似文献   

11.
The European Space Agency (ESA) initiated a joint project with the National Aeronautics and Space Administration (NASA) and industry partners for improved authoring and execution of Operations Data File (ODF) procedures. The system consists of an authoring tool and a viewer. The authoring tool is currently used by NASA and ESA to write/convert ODF procedures. The viewer will be used onboard the International Space Station (ISS) starting from Flight Increment 11. The new system, thanks to its interaction capability, will help astronauts and operators in the execution of checklist and logic flow procedures that ensure precise performance of experiments and smooth operation of the various systems.  相似文献   

12.
The Space Station Freedom will be a permanently manned, low-Earth orbit research facility, elements of which are being provided by the United States, Canada, countries of the European Space Agency and Japan. The facility will be assembled in space and operated well into the twenty-first century. The ground infrastructure must be able to support both assembly and long-term operations. The infrastructure will consist of ground facilities, support systems and the associated planning and management procedures. The key facilities identified to support Space Station Freedom Program (SSFP) integrated operations and their SSFP roles will be described in detail in this paper.

Requirements for the integrated ground infrastructure are developed and controlled within the SSFP requirements documentation and baselining processes. A Ground Systems Program directive summarizes key operations functions, roles and responsibilities of the various program participants. During 1992, the SSFP is conducting a major program review of the ground infrastructure including the definition of all facility and support system functional capabilities, interfaces and dataflow requirements. Operations functionality and interface verification tests are being identified and operations readiness dates are being established.  相似文献   


13.
Doetsch K 《Acta Astronautica》2005,57(2-8):661-675
The paper addresses the evolution of the Canadian Space Station Program between 1981 and 2003. Discussions with potential international partners, aimed at jointly developing the current International Space Station program, were initiated by NASA in 1982. Canada chose, through the further development of the technologies of Canadarm on the space shuttle, to provide and operate an advanced and comprehensive external robotics system for space station, and to use the space station for scientific and commercial purposes. The program was to become a corner-stone of the new Canadian Space Agency. The development phase of the Canadian Space Station Program has been completed and two of the three major elements are currently operational in space.  相似文献   

14.
The International Space Station (ISS) is no longer a paper program, focused on design, development and planning. It is an operational program, with hardware soon to be launched and ground systems in place. Additional modules, components and elements are now under construction in almost all of the 16 ISS International Partner and Participant countries, with metal being bent, software being written, and testing ongoing. Crew members for the first four crews are in training in the U.S. and Russia, with the first crew launching in mid 1999. Mission control centers are fully functioning in Houston and Moscow, with operations centers in St. Hubert, Darmstadt, Tsukuba, Turino, and Huntsville going on line as they are required.

The International Space Station, as the largest international civil program in history, features unprecedented technical, managerial, and international complexity. Seven international partners and participants encompassing 15 countries are involved in the ISS. Each partner is contributing and will be operating separate pieces of hardware, to be integrated on-orbit into a single orbital station. Mission control centers, launch vehicles, astronauts/cosmonauts, and support services will be provided by partners across the globe, but must function in a coordinated, integrated fashion. This paper will review the accomplishments of the ISS Program and each of the Partners and Participants over the past year, focusing on completed milestones and hardware. It will also give a status report on the development of the remainder of the ISS modules and components by each Partner and Participant, and discuss upcoming challenges.  相似文献   


15.
Turner RE  Baker JC 《Acta Astronautica》1998,42(1-8):107-114
The high inclination orbit for the International Space Station poses a risk to astronauts on EVA during occasional periods of enhanced high energy particle flux from the sun known as Solar Particle Events. We are currently unable to predict these events within the few-hour lead time required for evasive action. Compounding the threat is the fact that station construction occurs during increasing solar activity and through the peak of the solar cycle. In this paper we present an overview of the risk, the current methods to provide forecasts of SPEs, and potential risk mitigation options.  相似文献   

16.
A feasibility study in 1992 showed the benefits of a common European Russian space suit development, EVA Suit 2000, replacing the Russian space suit Orlan-DMA and the planned European Hermes EVA space suit at the turn of the century. This EVA Suit 2000 is a joint development initiated by the European Space Agency (ESA) and the Russian Space Agency (RKA). The main objectives of this development program are: first utilization aboard the Russian Space Station MIR-2; performance improvement with respect to current operational suits; development cost reduction. Russian experience gained with the present extravehicular activity (EVA) suit on the MIR Space Station and extensive application of European Technologies will be needed to achieve these ambitious goals. This paper presents the current status of the development activities, the space suit system design and concentrates in more detail on life support aspects. Specific subjects addressed will include the overall life support conceptual architecture, design features, crew comfort and operational considerations.  相似文献   

17.
The purpose of this paper is to describe a program aimed at an early on orbit demonstration of a large space structure fabrication and assembly capability. Requirements for the demonstration concept have been formulated. The concept that has been selected to meet these requirements is a Large Space Structure Platform consisting of a triangular prism of 31.5 m length. Sensors can be mounted on this platform to perform Earth observation measurements from space. Structural elements of the platform are fabricated using an automated beam builder in the Shuttle Orbiter payload bay. Special fixtures are designed to assemble the structure with the aid of the Remote Manipulator System and two astroworkers in an EVA mode. Results are shown of the platform preliminary design in terms of a design layout with related structural, thermal, mass properties and control dynamics data. The assembly scenario is described. Estimates of the total construction time and Orbiter support requirements are also presented.  相似文献   

18.
In the 36 years between June 1965 and February 2001, the US human space flight program has conducted 100 spacewalks, or extravehicular activities (EVAs), as NASA officially calls them. EVA occurs when astronauts wearing spacesuits travel outside their protective spacecraft to perform tasks in the space vacuum environment. US EVA started with pioneering feasibility tests during the Gemini Program. The Apollo Program required sending astronauts to the moon and performing EVA to explore the lunar surface. EVA supported scientific mission objectives of the Skylab program, but may be best remembered for repairing launch damage to the vehicle and thus saving the program. EVA capability on Shuttle was initially planned to be a kit that could be flown at will, and was primarily intended for coping with vehicle return emergencies. The Skylab emergency and the pivotal role of EVA in salvaging that program quickly promoted Shuttle EVA to an essential element for achieving mission objectives, including retrieving satellites and developing techniques to assemble and maintain the International Space Station (ISS). Now, EVA is supporting assembly of ISS. This paper highlights development of US EVA capability within the context of the overarching mission objectives of the US human space flight program.  相似文献   

19.
Russia has gained a lot of experience in operating the space suits (SS) during the extravehicular activities (EVA) by the crews of SALYUT-6, SALYUT-7 and MIR orbiting stations. A total of 21 Orlan-type space suits of various models were operated onboard the orbiting stations (OS) during almost 20 years period. Some of these space suits served up to 3 years in orbit. The paper reviews special features of long SS operation (without return to the Earth) onboard an orbiting station as well as the problems associated with SS repeated use by several crews. An analysis of measures to support solving of the problems of SS long stay and reliable operation onboard the orbiting station is made: selection of a corresponding SS type and separate elements design; selection of the materials; routine and preventive maintenance; development tests. The advantages of the space suit of a semi-rigid type for solving the above problems are shown. The paper includes a short analysis of space suits' operation onboard the Russian orbiting station MIR, and some restuts of inspection of the Orlan-DMA space suit returned to the Earth from orbit by STS-79 alter long operation in orbit. Recommendations on further improvement of the space suits for EVA operations in the International Space Station (ISS) are given.  相似文献   

20.
Sibing He 《Space Policy》2003,19(3):183-189
This article discusses China's ambitions in space now that it seems set to pursue human spaceflight. It suggests that, after sending its astronauts into space, completing orbital rendezvous-docking operations and placing a space lab in orbit, China will focus on the Moon with its Chang’e project. As an emerging space power, China will play a more active role in the international space community through collaboration in areas such as lunar exploration, science operations on the International Space Station, the Galileo Global Navigation Satellite System and the International Geosphere–Biosphere Program (IGBP). In particular, China will vigorously explore new opportunities to expand its cooperation with Russia and ESA to counteract Washington's attempt at containment. Meanwhile, Beijing will continue to follow its self-reliance principle to go its own way in space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号