首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
等离子体助燃(PAC)是航空动力领域中的一项新技术。活性粒子在等离子体助燃计算中一直是一个难题,文章建立H2/Air燃烧的化学动力学模型,计算与分析了在非平衡等离子体条件下,气体放电产生的活性粒子(O,H)和活性基(OH)在不同当量比下对燃烧过程中参与燃烧的组分以及温度和压力的影响,为航空发动机燃烧室等离子体助燃实验研究和实际应用提供理论依据。数学模型的计算结果显示等离子体助燃可以提高反应效率,减少燃烧上升时间,提高燃烧温度和火焰传播速率,强烈影响H2/Air混合物燃烧。  相似文献   

2.
摘要:为研究非平衡等离子体自身特性及其对乙烯-空气反扩散火焰的影响,基于同轴旋流式等离子体喷嘴,采用交流激励介质阻挡放电(Alternating Current Dielectric Barrier Discharge, AC DBD)方式在乙烯旋流中产生非平衡等离子体,分别从放电图像、温度和流场变化等方面对乙烯等离子体的电学特性、热效应和气动效应进行了研究,最后通过反扩散火焰可见光和CH*自发辐射图像详细分析了等离子体对乙烯-空气反扩散火焰的影响及其机理。结果表明,AC DBD激励方式使乙烯旋流在喷嘴环缝内产生了丝状非平衡等离子体,丝状等离子体通道数目随着激励电压上升而显著增加。与空气等离子体和氧气等离子体相似,乙烯等离子体兼具热效应和气动效应,其热效应主要集中在放电核心区域,对射流加热作用微弱,对燃烧的影响可以忽略不计;气动效应显著,主要体现在增强了射流掺混、扩大了射流覆盖面积以及降低了转捩点高度,射流掺混的增强导致反扩散火焰最大释热强度提升,且在低当量比时较为明显,射流转捩点高度的降低引起了火焰中心位置下降。  相似文献   

3.
为深入分析霍尔推力器放电通道的非麦氏电子分布对等离子体与壁面相互作用的影响,采用一维非稳态鞘层动力学模型,统计了等离子体与壁面相互作用的重要物理量。结果表明,非麦氏电子分布函数和麦氏电子分布函数下等离子体与壁面相互作用存在很大差异,电子服从非麦氏电子分布时入射电子在壁面上的能量沉积,以及二次电子对主流区电子的冷却作用都明显弱于电子服从麦氏分布的情形。  相似文献   

4.
等离子体技术在航空领域中的应用研究   总被引:1,自引:0,他引:1  
简要介绍了等离子体的概念和机理,以及等离子体技术在国外航空领域中的广泛应用,总结了我国的研究现状以及前景展望。  相似文献   

5.
不同初始温度下等离子体对H2/Air混合物燃烧影响   总被引:3,自引:3,他引:0       下载免费PDF全文
等离子体助燃过程是一个非平衡的,瞬时的,极不均匀的物理化学过程,活性粒子在等离子体助燃计算中是一个关键难题。文章建立H2/Air燃烧的化学动力学模型,计算与分析了在非平衡等离子体条件下,气体放电产生的活性粒子(O,H)和活性基(OH)在不同初始温度下对燃烧过程中参与燃烧的组分以及温度和压力的影响,为航空发动机燃烧室等离子体助燃实验研究和实际应用提供理论依据。数学模型的计算结果表明等离子体助燃可以提高反应效率,缩短延迟时间,增加燃烧温度,火焰传播速率,强烈影响H2/Air混合物燃烧效果。  相似文献   

6.
等离子体点火与助燃技术在航空发动机上的应用   总被引:5,自引:0,他引:5       下载免费PDF全文
等离子体点火与助燃技术是能源与动力领域的研究前沿。介绍了等离子体点火与助燃技术的研究背景和意义,分析了其基本原理,给出了常见的等离子体点火与助燃的类型,阐述了等离子体通过热强化、动力学强化与输运强化3种强化燃烧机制,利于点火助燃。针对国内外等离子体点火与助燃技术在航空发动机上的研究现状,提出了预燃式等离子体射流点火和旋转滑动弧助燃2种新型等离子体点火助燃方案,对等离子体点火与助燃技术在航空发动机上的实际应用进行了展望。  相似文献   

7.
 针对非均匀等离子体在飞行器隐身中的应用,采用分段线性电流密度递归卷积时域有限差分(PLJERC-FDTD)方法计算等离子体涡及涡串电磁散射特性,分析等离子体涡对飞行器隐身性能影响。计算表明,等离子体涡在很大频率区间对电磁波吸收效果显著,RCS降低很大,具有明显的隐身效果。等离子体涡表现出一定规律性的极化特性,对L,S和C波段电磁波具有不同的吸收、反射特性。  相似文献   

8.
等离子体是一种由大量电子、离子和中性粒子组成且总体上呈中性的物质聚集体,它不同于物质的气态、液态和固态,而被称为物质的第四态。等离子体在航空航天器隐身、降噪、推进及空气动力学等方面的应用一直是国外发达国家的重点研究领域之一。归纳总结了国外研究的主要等离子体风洞形式和等离子体发生器形式;探讨了低、跨、超声速风洞模型上等离子体的作用机理和产生的现象,介绍了在等离子体流动控制方面开展的风洞实验技术研究。  相似文献   

9.
等离子体点火技术是航空航天动力领域研究前沿。本文概括了等离子体点火研究背景和基本原理,总结了国内外等离子体点火技术在脉冲爆震发动机中的应用研究现状,指出脉冲爆震发动机中利用等离子体点火具有诸多优势,如点火能量大、能有效缩短点火延迟时间、提高DDT特性等。在此基础上,本文分析了应用于脉冲爆震发动机的等离子体点火驱动电源、等离子体点火器以及两种典型等离子体点火方案。最后针对等离子体点火技术在脉冲爆震发动机中的应用研究现状,对其发展方向进行了展望。  相似文献   

10.
新一代航空器和反导体系的发展,均离不开新的技术支撑。航空等离子体动力学被航空发达国家列为重点发展的基础领域之一。文章从等离子体流动控制改善气动性能和推进效能、等离子体材料处理与表面强化以及磁流体动力与等离子体点火助燃等方面,阐述了这一新技术诱人的发展前景。  相似文献   

11.
高速压气机叶栅纳秒脉冲等离子体流动控制仿真研究   总被引:3,自引:0,他引:3  
张海灯  李应红  吴云  赵勤 《航空学报》2014,(6):1560-1570
为研究纳秒脉冲等离子体气动激励在高亚声速来流条件下抑制压气机叶栅流动的分离机制,建立了基于唯象学的模拟纳秒脉冲介质阻挡等离子体气动激励特性的热源模型,在微秒量级时间尺度上分析研究了纳秒脉冲等离子体气动激励对叶栅通道流动结构的影响机制,并初步探究了纳秒脉冲等离子体气动激励的流动控制规律。研究结果表明:基于唯象学的热源模型能够较好地模拟纳秒脉冲等离子体气动激励诱导产生冲击波的气动特性;纳秒脉冲等离子体气动激励诱导产生的冲击波在高亚声速来流条件下能够对叶栅通道流动结构产生较大影响,其影响规律与激励特征和流场特性有关;高亚声速来流条件下,在叶栅通道中施加纳秒脉冲等离子体气动激励能够降低通道出口总压损失,改变流场结构。  相似文献   

12.
<正>地球等离子体层是内磁层相互作用的核心区域,在磁扰期间等离子体层的结构会发生明显改变,其动力学演变过程也对内磁层结构及近地空间环境产生重要影响,甚至会干扰天基技术系统,如等离子体层中的等离子体会影响该区域卫星和航天器的姿态控制,同时会对元器件造成损坏,所以研究等离子体层的结构在航空航天领域具有重要的应用价值。前人通过各种探测技术观察到等离子体层在磁扰期间的演变过程,发现了羽状、肩状、槽状、通道状、  相似文献   

13.
利用数值求解化学非平衡Navier-Stokes方程的方法,对有自由来流情况下喷流介质为空气和钾元素混合物的超声速钝体喷流流场进行数值模拟,分析喷流总温对模型周围电子密度分布的影响和喷流对模型气动力分布的影响,探讨利用喷流达到飞行器等离子体隐身方法的可行性。研究结果表明:在喷流总温T0j=2000K-3000K和喷流介质钾元素的质量分数为0.02和0.05的情况下,在模型周围可形成峰值电子数密度Ne=1011~5×1014/cm3的等离子体层,而且模型的阻力可降低35%。  相似文献   

14.
等离子体流动控制研究进展与展望   总被引:29,自引:4,他引:25  
吴云  李应红 《航空学报》2015,36(2):381-405
等离子体流动控制是基于等离子体气动激励的新型主动流动控制技术,具有响应时间短、激励频带宽等显著技术优势,在改善飞行器/发动机空气动力特性方面具有广阔的应用前景,已成为国际上等离子体动力学与空气动力学交叉领域的前沿研究热点。鉴于此,从介质阻挡放电(DBD)、电弧放电等离子体气动激励特性,等离子体气动激励抑制流动分离、控制附面层、控制激波与激波/附面层干扰、控制压气机与涡轮内部流动、控制管道流动和飞行控制等方面,综合评述了国际上等离子体流动控制的研究进展情况;从创新等离子体气动激励方式,揭示等离子体气动激励与复杂流动的非定常耦合机制,突破等离子体流动控制系统关键技术等方面,对未来的发展进行展望。  相似文献   

15.
张磊  张百灵  苌磊  李益文  段朋振 《推进技术》2017,38(9):2152-2160
为了揭示螺旋波等离子体推力器中的等离子体源功率耦合机理,针对气体工质电离后被射频加热的稳态过程,考虑等离子体密度非均匀分布条件,采用三参数压力函数(fa,sp,tp)和温度函数(f_a,s_t,t_t)表示柱状等离子体内压力和温度的径向分布,分析了径向压力梯度、温度梯度对螺旋波等离子体内功率沉积、波电场、波磁场和电流密度的影响。考虑梯度为正,梯度为负和梯度为零三种梯度类型。结果发现:压力梯度为正时,螺旋波在等离子体临近壁面处的功率沉积减弱,但射频波透入深度增加,原因是靠近管壁处等离子体密度较低,RF波径向单位长度衰减较少,透入深度增加。温度梯度为负时,柱状等离子体中心处能量沉积变强,原因是管中心位置等离子体密度较大,电子温度较高,与RF波能量耦合增强;横向截面的电磁场、电流密度分布在不同压力和温度梯度下基本不变,证明了m=1模式的稳定性。  相似文献   

16.
等离子体气动激励控制激波的实验研究   总被引:5,自引:2,他引:3  
在机械式和气动式激波控制方法的基础上,提出了激波控制的等离子体气动激励方法。采用电弧放电等离子体气动激励方式,设计了电弧放电等离子体气动激励器,在小型暂冲式超声速风洞中开展了等离子体气动激励控制尖劈斜激波的实验研究。结果表明,等离子体气动激励能够有效控制激波。实验研究了磁场对激波控制效果的影响,结果表明施加磁场使得激波控制效果显著增强。从热效应机理角度出发,建立了等离子体气动激励控制激波的热阻塞模型,采用该理论模型预测的激波变化规律与实验结果一致,从而验证了热阻塞模型的合理性。由于等离子体气动激励方法具有响应迅速、控制灵活等优点,因此将成为激波控制领域一条新的有价值的技术途径。  相似文献   

17.
脉冲等离子体气动激励抑制翼型吸力面流动分离的实验   总被引:21,自引:3,他引:18  
李应红  梁华  马清源  吴云  宋慧敏  武卫 《航空学报》2008,29(6):1429-1435
 为了提高等离子体气动激励控制附面层的能力,进行了脉冲等离子体气动激励抑制NACA 0015翼型失速分离的实验,研究了等离子体气动激励电压、位置、占空比和脉冲频率等对流动分离抑制效果的影响。在来流速度为72 m/s时,等离子体气动激励可以有效地抑制翼型吸力面的流动分离,翼型的升力增大约35%,翼型的临界失速迎角由18°增大到21°。实验结果表明:分离越严重,来流速度越大,有效抑制翼型失速分离的阈值电压越大;等离子体气动激励的最佳位置在流动分离起始点的前缘;调节占空比,可以在控制效果相当的情况下,降低等离子体气动激励所消耗的功率;当脉冲频率使斯特劳哈尔数等于1时,控制效果最佳。  相似文献   

18.
针对等离子体激励下的串列双圆柱绕流噪声抑制问题,通过将等离子体体积力模型、脱落涡模拟、声比拟理论等技术相结合的数值模拟方法,研究不同来流速度下等离子体激励器安装位置对双圆柱分离流形态控制与远场噪声抑制效果的影响。结果表明,当所施加的等离子体激励位于圆柱流动分离点附近时,控制措施可有效减小分离涡尺度和湍流强度,并显著降低远场监测点的总声压级。随着来流速度增大,等离子体激励器的降噪效果增强,同时最优安装位置前移。当来流速度达到55m/s时获得最优降噪效果,其远场监测点声压级频谱峰值和总声压级分别降低11.5dB和8.3dB。而随着来流速度的进一步增大,等离子体激励器的降噪效果逐渐减弱。所得结果对于等离子体流动控制抑制串列圆柱噪声的实际应用有一定指导意义。  相似文献   

19.
李勇  沈怀荣 《推进技术》2013,34(11):1530-1536
为了探讨非平衡等离子体对甲烷点火和火焰传播速度影响,采用化学动力学模型GRI-Mech3.0,利用零维、均质、完全混合模型和火焰传播速度模型,对甲烷点火过程和火焰传播过程进行数值模拟,计算得到了非平衡等离子体生成自由基(O自由基和NOX自由基)对甲烷点火延迟时间和火焰传播速度的影响规律。结果表明:当分别加入0.5% O和0.5% NOX活性基时,点火延迟时间减少了约94.7%,63.1%(加入NO)和94.2%(加入NO2)。通过反应路径分析和敏感度分析,揭示了非平衡等离子体生成自由基影响甲烷点火和火焰传播速度的化学反应机理。   相似文献   

20.
活性粒子对H_2/Air混合物燃烧的影响   总被引:1,自引:1,他引:0  
建立H2/Air混合物燃烧的化学动力学模型,计算与分析了在非平衡等离子体条件下,气体放电产生的活性粒子(O,H)和活性基(OH)在不同当量比下对参与燃烧的组分以及温度和压力的影响,为航空发动机燃烧室等离子体助燃(PAC)实验研究和实际应用提供理论依据.计算结果表明等离子体助燃可以提高反应效率、燃烧温度和火焰传播速率,减少燃烧上升时间,强烈影响H2/Air混合物燃烧.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号