首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
随着电子产品的广泛应用,电磁波泄露和干扰成为普遍问题,迫切需要发展新一代高性能吸波材料。SiC陶瓷及陶瓷基复合材料具有耐高温、耐腐蚀、抗氧化、高强度、低密度、介电性能可设计等优异特性,是极具潜力的吸波型热结构材料。化学气相渗透和先驱体转化陶瓷法可实现陶瓷材料的微结构设计,是制备高性能吸波型热结构陶瓷的主要方法,日益受到关注。本文综述了吸波型热结构陶瓷的设计与制备方法及其吸波机理。  相似文献   

2.
在飞行器隐身结构材料研究中,为达到宽、轻、薄等设计指标要求,通常需要对隐身结构材料进行有效的优化设计。本文基于一种电磁损耗型吸波结构材料的电磁参数的测量值,给出了反射系数与入射波频率和各层厚度、电磁参数的函数关系,构造了多目标优化函数,并用计算机模拟的方法对各层的厚度和整体材料的吸波性能进行了优化。  相似文献   

3.
电阻渐变型结构吸波材料的研究与发展   总被引:15,自引:3,他引:12  
结构吸波材料的发展建立在先进复合材料发展基础之上,融受力与吸波为一体,将新的吸波机制(如电阻片、电路模拟、手征媒质等)引入到结构吸波材料的研制中,可制备全新的结构吸波材料.电阻渐变型结构吸波材料具有优良的电结构可设计性,通过控制材料的类型(电介质或磁)、厚度、损耗系数及阻抗等,能够使雷达吸波材料具有宽频吸收效果,并可根据不同部位选择不同的结构形式,具有广阔的应用前景.  相似文献   

4.
将两种雷达吸波材料(RAM)按照1:1的体积比设计成不同的周期结构,利用电磁场有限元软件对反射率进行计算.计算结果表明,周期结构吸波材料的吸收峰位于两种吸波材料之间,周期结构的大小、形状以及吸波材料在周期结构中的位置对吸波性能均有较大影响.  相似文献   

5.
薄壁型结构吸波材料电结构设计研究   总被引:5,自引:0,他引:5  
本文以薄壁型结构吸波材料为研究对象,利用CAD方法设计结构形式和材料参数,研究频率对吸波性能的影响规律,并将设计规律用于实际材料的研制。  相似文献   

6.
通过对雷达波与材料的相互作用机理进行研究,得出隐身材料吸波性能取决于两个因素:电磁波阻抗匹配和电磁损耗。为此,对该无机非金属多孔泡沫隔热吸波兼容材料的结构电磁特性、频率特性和影响因素进行了分析研究,研究结果表明:无机泡沫吸波材料有比其同质粉末压片更大的电磁损耗,这种差异来自于三维网络结构产生的本征损耗:无机泡沫吸波材料具有更好的宽频带电磁损耗特性;无机泡沫吸波材料结构对材料电损耗的增加远大于磁损耗的增加.属电损型介质。  相似文献   

7.
本文介绍了适用于薄壁型吸收雷达波的结构材料。以垂直入射波在多层平板介质上的反射为理论依据,进行计算机优化设计,研制出在密度、厚度、吸波性能诸方面能满足进气道等薄壁结构要求的吸波材料。  相似文献   

8.
针对传统蜂窝吸波材料在低频段吸波效果差的特点,设计了一种蜂窝内壁加载回字形导线的复合吸波结构。这种回形线组合成的二维阵列本身是一种磁导率近零的频率选择表面。采用的蜂窝吸波结构高度为30 mm,吸波涂层厚度0.024 2 mm。仿真结果表明,加载回形线的复合吸波结构相较原蜂窝,在0.4~2 GHz内出现吸收峰,<-10 dB带宽增加10%~50%,并且在入射角0°~60°内具有良好的吸波稳定性。可通过调节回形线的几何参数与材料方阻,实现吸低频收峰位置与带宽的调控。  相似文献   

9.
设计了一种带蒙皮和金属底板的双层梯度蜂窝吸波结构,并利用Hashin-Shtrikman(HS)模型获得其等效电磁参数。在此基础上,以反射率低于-10dB带宽最大为优化目标,利用保收敛粒子群优化算法(Guarantee Convergence Particle Swarm Optimization,GCPSO)对四种不同排序方案的双层梯度蜂窝吸波结构进行优化设计。结果表明,入射电磁波的角度和极化方式以及吸波材料的选择、排序和厚度对双层梯度蜂窝结构的吸波性能有很大的影响;不同入射角度下TM极化时的吸波特性明显优于TE极化,在入射角为60^°时最为明显;对比四种方案优化结果显示,case 1方案由于选用损耗角较小的吸波材料充当透波层,分布于蒙皮下面,而选用损耗角较大的吸波材料作吸收层,并置于吸波结构底层,因而具有最大的优化目标函数,吸波效果最佳,且蜂窝高度仅为具有相同吸波效果的case 3方案的49.44%。因此,选择case 1方案作为本文最终优化结果。  相似文献   

10.
国外结构吸波材料在巡航导弹上的应用   总被引:2,自引:0,他引:2  
结构吸波材料研究是隐身技术研究的一个重要方面。本文叙述了结构吸波材料在国外的发展和应用动态,指出了在巡航导弹上应用结构吸波材料的必要性和主要的应用部位。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号