首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A space-based radar system concept is described that can provide continuous world-wide, all-weather, day-night observation and tracking of ships, aircraft, vehicles and ground facilities of interest. The system employs a constellation of radar satellites in low-earth orbit to provide continuous world-wide target access. The radars employ reflector antennas, TWT transmitters and high frequency (e.g., X band) to achieve long range with relatively low weight, complexity and cost. The radars operate in moving-target-detection (MTD) and synthetic-aperture-radar (SAR) spotlight imaging modes to observe moving and fixed targets, respectively. The system could support a wide range of military, intelligence, law-enforcement and civilian missions  相似文献   

2.
In the deployment of pulse Doppler (PD) radar, determination of phase and amplitude stability is the most difficult measurement problem. Unique requirements are placed on pulse and carrier stability so that the radar can perform in strong clutter. Because of subclutter visibility and sensitivity specifications, coherent noise, which is insignificant for noncoherent pulse radars, becomes extremely important. In solving the measurement problem, special support equipment was developed which is considered to have reached such a degree of refinement that it is probably one of the most technically advanced pieces of field test equipment supporting any operational radar. This paper discusses stability requirements, sources of instability, and the combination of techniques selected for verification of compliance of the PD radar with the stability requirements. The results of a program to develop special field support equipment to satisfy the measurement requirements are emphasized. Results of field experience and the special training required of military field personnel to enable them to effectively use this relatively complex support equipment are discussed.  相似文献   

3.
The radar designer must optimize parameters for performance in electronic countermeasures (ECM) and avoid any constraints which could be exploited by ECM. ECM/electronic counter-counter measures (ECCM) strategy must take into account electromagnetic compatibility (EMC) including enemy EMC. Electronic scanning improves search performance, but also reduces ECCM performance in other ways. While electronic scanning avoids some constraints, it imposes others, particularly in the frequency domain. It is argued that simple radars of good performance may be as cost effective in ECM as more complex systems. Some examples of recent developments are given.  相似文献   

4.
首先,分析步进频率雷达信号实现高分辨率的优缺点,在此基础上设计了一种改进的步进频率信号-参差脉冲重复间隔步进频率信号;然后,分析了该信号的处理过程。与步进频率信号在高速目标下成像失真相比,参差脉冲重复间隔步进频率信号的多普勒性能有了很明显的改善。最后,分析了参差脉冲重复间隔步进频率信号的低截获概率特性。  相似文献   

5.
合成孔径雷达(SAR)是全天候全天时的主动微波成像雷达,因此在军事和民用方面得到了广泛的应用。合成孔径雷达成像的显著特点是数据吞吐量大,实时性强,然而单片的高性能DSP无法满足SAR成像的需求,故采用多片DSP技术。在多片DSP并行处理技术中,它们之间如何进行通信是一个关键技术。本文以ADSP2106x为例,研究了DSP间的通信以及DSP与PC机间的通信。串行通信、DMA通信和VC++的MSComm控件通信都是很好的通信方式,但DMA更适合大量的数据通信。  相似文献   

6.
Ultra-wideband radar and random signal radar are two types of newly-developed radar systems. This paper introduces the special advantages of the combination of ultra-wideband technology and random signal radar to the international radar community. It shows that these two radar systems have a very close relationship in nature and can gain significant benefits from each other. It can be anticipated that the random signal modulated waveform will open many potential possibilities for the applications of ultra-wideband radar systems to civilian operating environments.  相似文献   

7.
Air surveillance radars for this decade will be required to provide reliable target location and trajectory information in height as well as the conventional geographical coordinates. These threedimensional radars will perform this task in spite of adverse environmental conditions such as ground, airborne clutter, and electromagnetic interference. The use of powerful false-alarm control processing allows automatic target detection and remoting of target information without overloading central processing capabilities. The technological evolution of the past decade has allowed sophisticated analysis, antenna/receiver/transmitter design, and signal/data processing techniques to be applied to the next generation of practical production radar systems. These radars will meet more severe performance requirements and will be significantly improved in terms of reliability, maintainability, and life cycle cost considerations. A candidate radar to fulfill the air surveillance role of this decade is the Series 320 radar manufactured by ITT Gilfillan.  相似文献   

8.
在基于数字卫星电视信号的无源探测系统中,分析其波形特点,探讨其用于雷达照射源信号的性能,对于整个系统研究来说,具有重要的意义。文中以“鑫诺一号”卫星为例,给出了基于“鑫诺一号”卫星参数为数字卫星电视信号的模型,并对该模型进行了仿真。仿真结果表明,数字卫星直播电视信号作为无源探测雷达的照射源信号具有较强的适应性,是一种优良的照射源信号。  相似文献   

9.
Ship navigation through ice-infested waters is a problem of deep concern to the Canadian shipping and exploration industry. Conventional marine radars have difficulty detecting small pieces of glacial ice called growlers which are very hazardous to vessels if struck. In an effort to improve detection performance, X-band radar measurements were collected and analyzed to determine the characteristics of clutter and growler returns that could lead to their separability. These analyses suggested that coherent medium dwell-time processing (i.e., integration times of a fraction of a second) could provide improvement In growler detectability over conventional methods; and long dwell-time processing (i.e., integration times on the order of seconds) could provide even further improvement. We report on the performance of two new coherent, medium dwell-time detectors. A third detector which is representative of conventional marine radar serves as a basis for comparison Although significant improvement in growler detectability is achieved, the two coherent detectors still fall short of operational requirements. This leads to the development of a long dwell-time detector which provides considerably better performance. Empirical results indicate that this new detector could well satisfy stringent operational requirements  相似文献   

10.
Polish radar research and development since 1953 is reviewed, covering the development and production of surveillance radars, height finders, tracking radars, air traffic control (ATC) radars and systems, and marine and Doppler radars. Some current work, including an L-band ATC radar for enroute control, a weather channel for primary surveillance radar, signal detection in non-Gaussian clutter, adaptive MTI filters and postdetection filtering, and a basic approach to radar polarimetry, is examined.<>  相似文献   

11.
A discussion of various types of x-band airborne radars is presented together with their systematic development through the years to the present time. Starting with simple, low pulse-repetition frequency (PRF) radars for measuring radar-target range, airborne radar development proceeded with more sophisticated high PRF Doppler radars where radar-target range and range rate were measured simultaneously. The use of Doppler (frequency) in signal processing allowed the separation of moving from nonmoving targets (ground), enabling the detection of moving targets in the presence of ground clutter. More recent developments in waveform generation and selection has resulted in the development of medium PRF radars, whereby a greater degree of tactical flexibility in target detection is achieved by combining the desirable features of both low and high PRF radars. Part of the available literature gives an overview, together with a specific example of the design and performance of an airborne medium PRF radar. Here, however, the systematic evolution of these radars is emphasized and the necessary theoretical background is developed for their performance calculations. Modern day airborne radars may be equipped with all three modes of operation, low, medium, and high PRF, allowing the operator to utilize the mode best suited for the tactical encounter. Low PRF and high PRF radars have been described elsewhere and are given here primarily for the sake of completeness and for the necessary background for developing medium PRF radar equations. They are also needed for developing the reasons why medium PRF radars came into being.  相似文献   

12.
Space-time adaptive processing (STAP) is an effective method adopted in airborne radar to suppress ground clutter. Multiple-input multiple-output (MIMO) radar is a new radar concept and has superiority over conventional radars. Recent proposals have been applying STAP in MIMO configuration to the improvement of the performance of conventional radars. As waveforms transmitted by MIMO radar can be correlated or uncorrelated with each other, this article develops a unified signal model incorporating waveforms for STAP in MIMO radar with waveform diversity. Through this framework, STAP performances are expressed as functions of the waveform covariance matrix (WCM). Then, effects of waveforms can be investigated. The sensitivity, i.e., the maximum range detectable, is shown to be proportional to the maximum eigenvalue of WCM. Both theoretical studies and numerical simulation examples illustrate the waveform effects on the sensitivity of MIMO STAP radar, based on which we can make better trade-off between waveforms to achieve optimal system performance.  相似文献   

13.
One of the best known weakness of radar sensors in defense and security applications is the necessity to radiate a signal, which can be detected by the target, so being possible (easy in fact) that the target is alerted about the presence of a radar before the radar is alerted about the presence of a target. In this context, Low Probability of Interception (LPI) Radars try to use signals that are difficult to intercept and/or identify. Spread spectrum signals are strong candidates for this application, and systems using special frequency or polyphase modulation schemes are being exploited. Frequency hopping, however, has not received much attention. The typical LPI radar at this moment of the technology is a CW-LFM radar. The simplicity of the technology is its best point. Polyphase codes, on the other hand have the inherent advantage of high instantaneous bandwidth regardless of observation time. But the complexity of the hardware is also higher. FH signals have traditionally been considered of lower performance but higher complexity, due to the difficulties to compensate the individual dopplers for the individual range cells in the receiver. One important point is that an FH radar must be clearly distinguished from an agile frequency radar. In the latter, a pulsed signal is transmitted using different frequencies from pulse to pulse. In an FH radar the frequency changes must be during the pulse. In fact, in an LPI FH radar, a CW frequency hopped signal is used. A radar system concept is proposed in which it shows how these problems can be overcome in a tracking application. Also, the signal format is analyzed under the scope of future decade digital interceptors, showing that, in fact, this kind of signal exhibits improvement in some performances and requires a hardware that is only slightly more complex than that needed for CW-LFM systems  相似文献   

14.
Different types of distributed radar systems and data fusion centers are increasingly used by surface-based air defense systems. Besides the well-established airborne threats, new platforms for air surveillance and attacking devices have appeared and recognized air picture (RAP) production needs to be revised and modified following the events of September 11, 2001. From a military operational and logistic support point of view, it is well-known that not only the long range radars currently in operation, but also the recently procured radars, degrade in performance rapidly and their maintenance costs are high. Using the possibilities offered by emerging technical developments, the problem is to upgrade sensors and existing infrastructure in a way that exploits the information gathered optimally. It is the opinion of this author that one of the most promising approaches to emphasis net-centricity is the use of radar-triangle netcentric structures augmented by netted VHF radars to solve these tasks in a cost-effective manner. This work introduces an analysis of a solution that fully integrates newly required capabilities into the current long range radar net and infrastructure, keeping research and development (R&D) and maintenance at a low cost.  相似文献   

15.
Millimeter wavelength radars are used to study plasma effects associated with ionized flow fields of projectiles launched at hypersonic speeds into a free-flight ballistic range. Two CW Doppler radars, at frequencies of 35 and 70 Gc/s, measure the nose-on backscattering radar cross sections during flight. The design and performance of the two radars are described in detail. A signal simulator provides absolute calibration. The purpose is to measure changes that occur in the radar cross sections of hypersonic projectiles caused by highly ionized flow fields. Under certain conditions the nose-on backscattering radar cross section of a blunt-nosed metal projectile decreases drastically when a thin, shock-produced layer of ionized gas covers the projectile. A theoretical analysis of this effect is given. Comparisons between theoretical predictions and experimental data show good correlation.  相似文献   

16.
根据空间目标探测与识别雷达的任务要求,通过对雷达搜索、扫描、探测、多目标处理能力、分辨率的技术分析与经济性比较,给出了空间目标探测与识别雷达工作频段与体制选择的参考性结论。  相似文献   

17.
The upheaval in world geopolitical structure is changing the nature of international security and the nature of possible future conflicts. A review of the character of these future conflicts points to new critical roles for military radars. This paper is not an overview of all future military radar possibilities but rather it assesses the nature of future conflicts and identifies certain critical radar systems and technologies that are the keystone to favorable resolution of these conflicts  相似文献   

18.
The history of range instrumentation radars begins at the end of World War 11, with the SCR-584 radar. Since then, the use of instrumentation radars on ranges all over the globe has expanded greatly to gather metric performance data on aircraft, projectiles, missiles, and satellites. In this paper, key subsystem-level and system-level developments during the past decade are reviewed, including pulse-Doppler, digital range systems, calibration techniques, computer usage, and dualfrequency systems. Recently developed instrumentation radars from domestic and foreign sources are described as are three unique high-power large-aperture systems used for satellite and ballisticmissile measurements. The paper concludes by examining the likely requirements for instrumentation radars of the future.  相似文献   

19.
根据某型雷达低截获概率波形设计的需要,分析了雷达探测目标的高频散射机理,并运用物理光学法、等效电磁流法计算了约定目标在不同姿态下和不同电磁波频率照射下的RCS值,从而为验证雷达波形在能探测到目标情况下的LPI性能提供了支撑。实验结果表明,基于电磁场理论的目标RCS估算方法是研究雷达LPI波形的一种有效工具,方法也适合于其他领域RCS估算的需要。  相似文献   

20.
新一代测量雷达在发展各种先进武器平台与航空航天及空间技术方面有广泛的应用前景。本文讨论对测量雷达的一些新的需求及相关技术,对雷达精细测量的需求与有关技术是本文讨论重点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号