首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The purpose of this study was to determine whether applying foot pressure to unrestrained subjects during space flight could enhance the neuromuscular activation associated with rapid arm movements. Four men performed unilateral arm raises while wearing--or not wearing--specially designed boots during a 81- or 115-day space flight. Arm acceleration and surface EMG were obtained from selected lower limb and trunk muscles. Pearson r coefficients were used to evaluate similarity in phasic patterns between the two in-flight conditions. In-flight data also were magnitude normalized to the mean voltage value of the muscle activation waveforms obtained during the no-foot-pressure condition to facilitate comparison of activation amplitude between the two in-flight conditions. Foot pressure enhanced neuromuscular activation and somewhat modified the phasic features of the neuromuscular activation during the arm raises.  相似文献   

2.
The effect of a 20-day space flight on water, Na+, K+, Mg2+, Ca2+ and glycogen contents as well as on activities of glycogen metabolism enzymes--glycogen synthetase and glycogen phosphorylase--of rat skeletal muscles was studied. This data is regarded as an integral test characterizing the state of contractile tissue of the animals at the final stage of flight aboard biosatellites. The measurements indicate that there were no significant changes of cations and glycogen contents nor of the enzymic activities in fast-twitch muscles during the 20-day spaceflight. At the same time dehydration in these muscles was observed, which disappeared on the 25th postflight day. In slow-twitch antigravitational skeletal muscle (m. soleus) there was a decrease of K+ and increase of Na+ in the tissue contents. The changes disappeared at the end of the on-earth readaptation period. From the pattern of these observations, we can conclude that the 20-day space flight leads to some reversible biochemical changes of the rat skeletal muscles. A conclusion can be drawn about necessity of creating, aboard the spaceship, an artificial load on antigravitational skeletal muscles.  相似文献   

3.
The purpose of the study was to explore the effects of long-duration space flight on the acquisition of specific visual targets in the horizontal plane. Seven cosmonauts (4 high performance pilots and 3 non-pilots) who had flown between 186–198 days on Mir served as subjects. Baseline testing was performed 4 times prior to launch and 4 times following landing at different intervals totrack recovery. During testing the subjects were required to acquire targets that were randomly presented with both a head and eye movement using a time optimal strategy. Prior to flight two unique head movement strategies, related primarily to piloting experience, were used for target acquisition. Non-pilots employed a Type-I strategy consisting of high velocity head movements with large peak amplitudes, while high performance pilots used primarily low velocity, small amplitude head movements (Type-II) to acquire the targets (p<0.02). For both strategies peak head velocities increased as the angular distance to the target increased (p<0.01) resulting in greater discrimination between strategies for the 60° targets. While preflight eye velocity between strategies did not reach statistical significance, postflight testing revealed a decrease in eye velocity for Type-I compared with their preflight performance (p<0.02) for the 60° targets. Postflight, the Type-I group showed a decrease in head velocity (p<0.20) while the Type-II group compensated by increasing head velocity (p<0.02). Variability for both of the head and eye parameters tended to increase postflight for both types of strategies.  相似文献   

4.
Two bed rest analog studies of space flight were performed; one 14 d and the other 28 d in duration. Exercise response was studied in detail during the 28 d study and following both the 14 d and 28 d studies. This paper relates the results of these studies to physiologic changes noted during and following space flight. The most consistent change noted after both bed rest and space flight is an elevated heart rate during exercise. A second consistent finding is a postflight or postbed rest reduction in cardiac stroke volume. Cardiac output changes were variable. The inability to simulate inflight activity levels and personal exercise makes a direct comparison between bed rest and the results from specific space flights difficult.  相似文献   

5.
To assess the effects of prolonged space flight on the electrophysiological properties of the heart, vectorcardiograms (VCG) were obtained on the Skylab crews at regular intervals during flight and the pre- and postflight periods. The VCG signals were telemetered from Skylab and analyzed by digital computer. Conventional 12-lead electrocardiograms were derived from the VCG signals by a lead transformation program. Standardized exercise loads were incorporated into the experiment protocol to increase the sensitivity of the VCG for effects of deconditioning and to detect susceptibility for arrhythmias. In Skylab II, 24 preflight, 21 inflight, and 19 postflight experiments were analyzed. Statistically significant inflight changes observed in two or more crew members included: decreased resting heart rate, increased QRS duration, anterior shift QRS vector, increased QRS vector magnitude, anterior shift T vector, and increased T vector magnitude. One astronaut had occasional premature ventricular contractions (PVC) during the pre- and postflight phases. He had a single episode of multiple PVC's during heavy-load exercise testing in flight. A second astronaut had no arrhythmia during pre- or inflight testing. On postflight day 21 he had multiple PVC's and salvos of ectopic ventricular beats. He has had no recurrence of the arrhythmia. With the exception of the cardiac arrhythmias, no deleterious electrophysiological changes were observed during Skylab II.  相似文献   

6.
Uri JJ  Haven CP 《Acta Astronautica》2005,56(9-12):883-889
The tenth long-duration expedition crew is currently in residence aboard International Space Station (ISS), continuing a permanent human presence in space that began in October 2000. During that time, expedition crews have been operators and subjects for 18 Human Life Sciences investigations, to gain a better understanding of the effects of long-duration space flight on the crewmembers and of the environment in which they live. Investigations have been conducted to study: the radiation environment in the station as well as during extravehicular activity (EVA); bone demineralization and muscle deconditioning; changes in neuromuscular reflexes; muscle forces and postflight mobility; causes and possible treatment of postflight orthostatic intolerance; risk of developing kidney stones; changes in pulmonary function caused by long-duration flight as well as EVA; crew and crew–ground interactions; changes in immune function, and evaluation of imaging techniques. The experiment mix has included some conducted in flight aboard ISS as well as several which collected data only pre- and postflight. The conduct of these investigations has been facilitated by the Human Research Facility (HRF). HRF Rack 1 became the first research rack on ISS when it was installed in the US laboratory module Destiny in March 2001. The rack provides a core set of experiment hardware to support investigations, as well as power, data and commanding capability, and stowage. The second HRF rack, to complement the first with additional hardware and stowage capability, will be launched once Shuttle flights resume. Future years will see additional capability to conduct human research on ISS as International Partner modules and facility racks are added to ISS. Crew availability, both as a subject count and time, will remain a major challenge to maximizing the science return from the bioastronautics research program.  相似文献   

7.
《Acta Astronautica》2007,60(4-7):223-233
Purpose: Orthostatic stability on Earth is maintained through sympathetic nerve activation sufficient to increase peripheral vascular resistance and defend against reductions of blood pressure. Orthostatic instability in astronauts upon return from space missions has been linked to blunted vascular resistance responses to standing, introducing the possibility that spaceflight alters normal function between sympathetic efferent traffic and vascular reactivity.Methods: We evaluated published results of spaceflight and relevant ground-based microgravity simulations in an effort to determine responses of the sympathetic nervous system and consequences for orthostatic stability.Results: Direct microneurographic recordings from humans in space revealed that sympathetic nerve activity is increased and preserved in the upright posture after return to Earth (STS-90). However, none of the astronauts studied during STS-90 presented with presyncope postflight, leaving unanswered the question of whether postflight orthostatic intolerance is associated with blunted sympathetic nerve responses or inadequate translation into vascular resistance.Conclusions: There is little evidence to support the concept that spaceflight induces fundamental sympathetic neuroplasticity. The available data seem to support the hypothesis that regardless of whether or not sympathetic traffic is altered during flight, astronauts return with reduced blood volumes and consequent heightened baseline sympathetic activity. Because of this, the ability to withstand an orthostatic challenge postflight is directly proportional to an astronaut's maximal sympathetic activation capacity and remaining sympathetic reserve.  相似文献   

8.
Pozzo T  Berthoz A  Popov C 《Acta Astronautica》1995,36(8-12):727-732
Here are reported preliminary results of the “Synergy” experiment performed aboard the Russian orbital station “MIR” in July 1993 (Altaïr Mission). The experiment was carried out before, during, and after the space flight of two astronauts (S1 and S2). The duration of the flight was 21 days for S1 and 6 month for S2. The subjects were tested during preflight, inflight and postflight. The astronaut subjects were fixed on the ground by the feet. They were asked to pick up a box in front of them on the ground. Two velocities of movement and two distances of the target to be reached were tested. The movement of several small markers placed on the body was recorded on video tape.

Results show that the shape of head and hand trajectories in the sagittal plane remains roughly the same during the flight in spite of the modification of mechanical constraints. Trajectory invariance does not result in joint angular displacement invariance. These data indicate that the planning of the movement takes place in terms of head and hand trajectories rather than joint rotations as it was previously suggested for simple arm reaching movement.  相似文献   


9.
The system of countermcasure of microgravity effects has been developed in Russia that allowed to perform safely long-term space flights. This system that includes different means and methods such as special regimens of physical exercises, axial loading (“Pingiun”) and antigravity suits, low body negative pressure device (LBNP, “Chibis”) and “cuffs” and others has been used with certain variations at certain stages of flight in 27 successfully accomplished space flights that lasted from 60 to 439 days. The pre-, in- and postflight studies performed in 57 crew members of these flights have shown that the system of countermeasure is effective in preventing or diminishing to a great extent almost all the negative effects of weightlessness in flights of a year and more duration and that the intensity and duration of changes recorded in different body systems after flights do not correlate significantly to flight durations, correlating strongly to the volume and intensity of physical exercises used during flight and especially during concluding stage of it.  相似文献   

10.
In manned space flights the renal function and water-salt metabolism undergo substantial changes. With the reserve capabilities of kidneys in mind, their function and regulation of the water-salt balance were investigated in cosmonauts postflight and in Earth-bound simulation experiments with the aid of water loading, hormonal injections (pituitrin, engiotensin, DOCA, ACTH); water- and ion-release were also studied during LBNP and physical exercises. The cosmonauts who performed space flights of 2 to 5 days showed water retention and increased urine excretion of salts during the first postflight days in response to a water load. After the 18-day flight water excretion remained unchanged whereas salt excretion increased. The capacity for osmotic concentration and urine dilution did not alter. The study of the hormonal effect in simulation experiments of different duration demonstrated a normal renal response to the hormonal excretion. After the LBNP tests and physical exercises the water- and salt-excretion declined; a correlation between the level of water- and salt-excretion and the level of these loads was established. The data on the blood- and urine-ionic composition, excretion of nitrogen metabolites, and hormones postflight as well as the results of load and functional tests suggest that changes in the renal function of cosmonauts in weightlessness are associated with regulatory effects on the kidney rather than disturbances in the function of nephron cells.  相似文献   

11.
The system of countermeasures used by Russian cosmonauts in space flights on board of International Space Station (ISS) was based on the developed and tested in flights on board of Russian space stations. It included as primary components: physical methods aimed to maintain the distribution of fluids at levels close to those experienced on Earth; physical exercises and loading suits aimed to load the musculoskeletal and the cardiovascular systems; measures that prevent the loss of fluids, mainly, water-salt additives which aid to maintain orthostatic tolerance and endurance to gravitational overloads during the return to Earth; well-balanced diet and medications directed to correct possible negative reactions of the body to weightlessness. Fulfillment of countermeasure's protocols inflight was thoroughly controlled. Efficacy of countermeasures used were assessed both in- and postflight. The results of studies showed that degrees of alterations recorded in different physiological systems after ISS space flights in Russian cosmonauts were significantly higher than those recorded after flights on the Russian space stations. This phenomenon was caused by the failure of the ISS crews to execute fully the prescribed countermeasures' protocols which was as a rule excused by technical imperfectness of exercise facilities, treadmill TVIS particularly.  相似文献   

12.
To investigate changes in spatial orientation ability and walking performance following space flight, 7 astronaut subjects were asked pre- and post-flight to perform a goal directed locomotion paradigm which consisted of walking a triangular path with and without vision. This new paradigm, involving inputs from different sensory systems, allows quantification of several critical parameters, like orientation performance, walking velocities and postural stability, in a natural walking task. The paper presented here mainly focusses on spatial orientation performance quantified by the errors in walking the previously seen path without vision. Errors in length and reaching the corners did not change significantly from pre- to post-flight, while absolute angular errors slightly increased post-flight. The significant decrease in walking velocity and a change in head-trunk coordination while walking around the corners of the path observed post-flight may suggest that during re-adaptation to gravity the mechanisms which are necessary to perform the task have to be re-accomplished.  相似文献   

13.
Photodynamic therapy (PDT), in which tissues may be rendered fatally light-sensitive represents a relatively novel treatment for cancer and other disorders such as cardiovascular disease. It offers significant application to disease control in an isolated environment such as space flight. In studying PDT in the laboratory, low energy lasers such as HeNe lasers are used to activate the photosensitized cellular target. A major problem associated with these studies is that events occurring during actual exposure of the target cells to the system cannot be examined in real time. In this study HeLa cells were photosensitized and photodynamic activation was accomplished using the scanning microbeam from a confocal laser scanning microscope. This form of activation allowed for simultaneous photoactivation and observation and facilitated the recording of events at a microscopic level during photoactivation. Effects of photodynamic activation on the target cells were monitored using the fluorophores rhodamine 123 and ethidium homodimer-1. Potential applications of these forms of analyses to space medicine and cell biology are discussed.  相似文献   

14.
Prediction that the various stresses of flight, particularly weightlessness, would bring about significant derangements in the metabolism of the musculoskeletal system has been based on various observations of long-term immobilized or inactive bed rest. The only attempt at controlled measurement of metabolic changes in space prior to Skylab, a study during the 14-day Gemini VII flight, revealed rather modest losses of important elements. The three astronauts of Skylab II consumed a planned day-by-day, quite constant, dietary intake of major metabolic elements in mixed foods and beverages and provided virtually complete collections of excreta for 31 days preflight, during the 28 days inflight, and for 17 days postflight. Analyses showed that, in varying degree among the crewmen, urinary calcium increased gradually during flight in a pattern similar to that observed in bed-rest studies: the mean plateau peak of urinary calcium excretion in the latter part of flight was double preflight levels. Fecal calcium excretion did not change significantly, but calcium balance, owing to the urinary calcium rise, became either negative or less positive than in preflight measurement. Increased excretion and negative balance of nitrogen and phosphorus indicated appreciable loss of muscle tissue in all three crewmen. Significant losses also occurred inflight in potassium, sodium, and magnesium. Based on the similarity in pattern and degree between these observations and those in bed rest of the losses in calcium, phosphorus, and nitrogen, musculoskeletal integrity would not be threatened in space flights of up to at least 3 months. However, if similar changes occur, indicative of continuing losses of these elements, in the planned Skylab flights for considerably more than 28 days, concern for capable musculoskeletal function should be serious for flights of very many months' duration, and greater research attention will need to be given to development of protective counter-measures.  相似文献   

15.
A metabolic balance study was conducted on the three crewmembers of the 84-day Skylab IV earth orbital mission. Dietary intake was controlled, monitored, and kept very nearly constant for a period commencing 21 days prior to flight, throughout flight, and for a period of 18 days postflight. Within the first 30 days of flight urine calcium rose to a level approx. 100% above preflight levels and remained elevated for the remainder of the flight. Fecal calcium excretion increased more slowly but continued to accelerate throughout the flight and did not return to baseline levels during the postflight period. Urinary nitrogen increased to 25-30% above preflight levels within one month following launch and thereafter gradually subsided toward control values. The overall losses of calcium averaged approx. 200 mg per day throughout the mission while nitrogen losses averaged 590 mg. Various other indices of musculoskeletal deterioration are discussed and correlated. The parallelism between the effects of weightlessness and bed rest is reviewed. It is noted, that no evidence is yet available as to the identity of the initial biological response to the absence of gravity.  相似文献   

16.
根据某空间飞行器及目标几何模型,用高频近似法计算飞行器的电磁散射和角散射线偏差等,计算结果与矩量法(MOM)及暗室测试结果吻合,验证了算法的正确性,并给出了该空间飞行器雷达散射截面积(RCS)的统计结果、角闪烁在近距离的变化,以及模拟运动过程中散射特性随时间的变化。结果表明:该空间飞行器点频后向RCS满足χ2分布模型;在远场,角闪烁引起的线偏差与距离基本无关,在近场,线偏差与距离密切相关;动态散射特性与运动中的相对姿态和距离等密切相关。  相似文献   

17.
The activity of the catecholaminergic system was measured in the hypothalamus of rats which had experienced an 18.5-19.5-day-long stay in the state of weightlessness during space flights on board Soviet biosatellites of the type Cosmos. In the first two experiments, Cosmos 782 and 936, the concentration of norepinephrine and the activities of synthesizing enzymes tyrosine hydroxylase and dopamine-beta-hydroxylase and of the degrading enzyme monoamine oxidase were measured in the total hypothalamus. None of the given parameters was changed after space flight. In the light of the changes of these parameters recorded after exposure to acute stress on Earth, this finding indicates that long-term state of weightlessness does not represent an intensive stressogenic stimulus for the system studied. In the space experiment Cosmos 1129, the concentration of norepinephrine, epinephrine, and dopamine was studied in isolated nuclei of the hypothalamus of rats within 6-10 hr following return from space. Norepinephrine was found to be significantly reduced in the arcuate nucleus, median eminence and periventricular nucleus, epinephrine in the median eminence, periventricular and suprachiasmatic nuclei, whereas dopamine was not significantly changed after space flight. The decreased catecholamine levels found in some hypothalamic nuclei of rats which had undergone space flight indicate that no chronic intensive stressor could have acted during the flight, otherwise the catecholamine concentration would have been increased in the nuclei. The decreased levels must have been induced by the effect of a stressogenic factor acting for a short time only, and that either during the landing maneuver or immediately after landing. Thus long-term exposure of the organism to the state of weightlessness does not represent a stressogenic stimulus for the catecholaminergic system in the hypothalamus, which is one of the regulators of the activation of neuroendocrine reactions under stress.  相似文献   

18.
The aim of this study was to investigate the influence of an exercise device, designed to improve the function of lumbopelvic muscles via low-impact weight-bearing exercise, on electromyographic (EMG) activity of lumbopelvic, including abdominal muscles. Surface EMG activity was collected from lumbar multifidus (LM), erector spinae (ES), internal oblique (IO), external oblique (EO) and rectus abdominis (RA) during overground walking (OW) and exercise device (EX) conditions. During walking, most muscles showed peaks in activity which were not seen during EX. Spinal extensors (LM, ES) were more active in EX. Internal oblique and RA were less active in EX. In EX, LM and ES were active for longer than during OW. Conversely, EO and RA were active for a shorter duration in EX than OW. The exercise device showed a phasic-to-tonic shift in activation of both local and global lumbopelvic muscles and promoted increased activation of spinal extensors in relation to walking. These features could make the exercise device a useful rehabilitative tool for populations with lumbopelvic muscle atrophy and dysfunction, including those recovering from deconditioning due to long-term bed rest and microgravity in astronauts.  相似文献   

19.
Adaptation to the weightless state and readaptation after space flight to the 1-G environment on the ground are accompanied by various transitory symptoms of vestibular instability, kinetosis, and illusory sensations. Aside from the problem of how to treat and if possible prevent such symptoms, they offer a clue to a better understanding of normal vestibular functions. Weightlessness is a powerful new "tool" of vestibular research. Graybiel reported as early as 1952 that human subjects observed the illusion that a real target and the visual afterimage seemed to raise in the visual field during centrifugation when the subjects were looking toward the axis of rotation (oculogravic illusion). In aircraft parabolic-flight weightlessness, human subjects observed that fixed real targets appeared to have moved downward while visual afterimages appeared to have moved upward (oculoagravic illusion). It can be shown by electronystagmography as well as by a method employing double afterimages that part of this illusion is caused by eye movements that are triggered by the changing input from the otolith system. Another part of the illusion is based on a change of the subjective horizontal and must be caused by convergence of vestibular and visual impulses "behind" the eyes. This part was measured independently of the first one by using a new method. Eye movements could be prevented during these experiments by optical fixation with the right eye on a target at the end of a 24-in. long tube which was rigidly attached parallel to the longitudinal axis of an aircraft. At the same time the subject tried to line up a shorter tube, which was pivoting around his left eye, with the subjective horizon.  相似文献   

20.
对完成任务的运载火箭末级、失效卫星等空间非合作目标进行空间操作是复杂的,需要地面测控网与主动航天器的密切合作才能完成抵近及相应操作。以火箭末级残骸作为空间非合作目标,给出了远程自主接近的轨道设计方法。通过地面遥控上传的目标轨道参数,主动航天器进行自主异面机动、主动调相等多次点火,完成对非合作目标的远程接近,接近距离在50km之内,2016年6月底远征一号甲上面级的成功飞行验证了该方法和设计结果的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号