首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The modified generalized sign test processor is a nonparametric, adaptive detector for 2-D search radars. The detector ranks a sample under test with its neighboring samples and integrates (on a pulse-to-pulse basis) the ranks with a two-pole filter. A target is declared when the integrated output exceeds two thresholds. The first threshold is fixed and yields a 10-6 probability of false alarm when the neighboring samples are independent and identically distributed. The second threshold is adaptive and maintains a low false-alarm rate when the integrated neighboring samples are correlated and when there are nonhomogeneities, such as extraneous targets, in the neighboring cells. Using Monte Carlo techniques, probability of false-alarm results, probability of detection curves, and angular accuracy curves have been generated for this detector. The detector was built and PPI photographs are used to indicate the detector's performance when the radar is operated over land clutter.  相似文献   

2.
The problem considered in this paper is the detection of a signal known except for time-varying carrier phase in white Gaussian noise. The method of attacking this problem is to model the time-varying carrier phase as a Markov process. Fourier transform techniques are then applies to yield a simple time-wise adaptive form for the phasetracking detector. Optimal accounting for the time variations in phase is accomplished via a simple algorithm which serves to update the detector memory. Furthermore, it is shown that this memory updating operation is a discrete linear filter whose impulse response is a simple function of the previous memory state and the Markov transitional statistics on the phase. A priori knowledge regarding the phase is summarized in the initial impulse response of the updating filter.  相似文献   

3.
Closed-form expressions are given for the standard deviation of the error in estimating angle (usually azimuth) in a scanning radar. The formulas apply to Swerling's lower bound and to the error using a pulse-to-pulse two-pole filter. They apply to non-fluctuating and Swerling II targets and hold for all signal-to-noise ratios. Comparison with graphical results in the literature shows that the average deviation obtained using the formulas is less than 4 percent.  相似文献   

4.
Beginning with the derivation of a least squares estimator that yields an estimate of the acceleration input vector, this paper first develops a detector for sensing target maneuvers and then develops the combination of the estimator, detector, and a "simple" Kalman filter to form a tracker for maneuvering targets. Finally, some simulation results are presented. A relationship between the actual residuals, assuming target maneuvers, and the theoretical residuals of the "simple" Kalman filter that assumes no maneuvers, is first formulated. The estimator then computes a constant acceleration input vector that best fits that relationship. The result is a least squares estimator of the input vector which can be used to update the "simple" Kalman filter. Since typical targets spend considerable periods of time in the constant course and speed mode, a detector is used to guard against automatic updating of the "simple" Kalman filter. A maneuver is declared, and updating performed, only if the norm of the estimated input vector exceeds a threshold. The tracking sclheme is easy to implement and its capability is illustrated in three tracking examples.  相似文献   

5.
A linear array of hydrophones is considered for detecting a signal echo from a stationary target in the presence of reverberation. The structure of the optimum (likelihood ratio) detector is compared with that of a beamformer-matched filter detector. The conditions causing an increase in the spatial noise correlation between two hydrophones are the conditions under which the optimum spatial detector performs significantly better than the beamforming detector. A study of the space-time correlation function of reverberation shows that 1) a decrease in scatterer angular spread (or a narrowing of the receiver directivity pattern) tends to increase the spatial correlation, 2) if the scatterer Doppler spread is much less than the signal carrier frequency and if the angular spread is uniform, it is still possible to get a high correlation if the intersensor distance is much smaller than the carrier wavelength. These conditions indicate situations where optimum techniques may be worthwhile.  相似文献   

6.
The average likelihood ratio detector is derived as the optimum detector for detecting a target line with unknown normal parameters in the range-time data space of a search radar, which is corrupted by Gaussian noise. The receiver operation characteristics of this optimum detector is derived to evaluate its performance improvement in comparison with the Hough detector, which uses the return signal of several successive scans to achieve a non-coherent integration improvement and get a better performance than the conventional detector. This comparison, which is done through analytic derivations and also through simulation results, shows that the average likelihood ratio detector has a better performance for different SNR values. This result is justified by showing the disadvantages of the Hough method, which are eliminated by the optimum detector. To have an estimate for the location of the detected target line in the optimum detection method as the Hough method, which detects and localizes the target lines simultaneously, we present the maximum a posteriori probability estimator. The estimation performance of the two methods is then compared and it is shown that the maximum a posteriori probability estimator localizes the detected target lines with a better performance in comparison with the Hough method.  相似文献   

7.
The detection of signals in an unknown, typically non-Gaussian noise environment, while attempting to maintain a constant false-alarm rate, is a common problem in radar and sonar. The raw receiver data is commonly processed initially by a bank of frequency filters. The further processing of the outputs from the filter bank by a two-sample Mann-Whitney detector is considered. When the noise statistics in all filters are identical, the Mann-Whitney detector is distribution free, i. e., the false-alarm probability may be prescribed in advance regardless of the precise form of the noise statistics. The primary purpose of this paper is to demonstrate the potential advantage of nonparametric detectors over conventional detectors. The signal detection performance of the Mann-Whitney detector is compared to that of an ordinary linear envelope detector plus integrator in the presence of Gaussian and several hypothetical forms of non-Gaussian noise. This comparison is made for both uniform and nonuniform distributions of noise power across the filter bank. Besides providing a much more constant false-alarm rate than the conventional detector, the Mann-Whitney detector's signal detection performance is found also to be much less sensitive to the form of the noise statistics. In one case, its detection sensitivity is found to be 11 dB better than that of the conventional detector. Even when the noise power density is made moderately nonuniform across the filter bank, the detection performance of the Mann-Whitney detector is found not to be significantly affected.  相似文献   

8.
A likelihood receiver for a Gaussian random signal process in colored Gaussian noise is realized with a quadratic form of a finite-duration sample of the input process. Such a receiver may be called a "filtered energy detector." The output statistic is compared with a threshold and if the threshold is exceeded, a signal is said to be present. False alarm and detection probabilities may be estimated if tabulated distributions can be fitted to the actual distributions of the test statistic which are unknown. Gamma distributions were fitted to the conditional probability densities of the output statistic by equating means and variances, formulas for which are derived assuming a large observation interval. A numerical example is given for the case in which the noise and signal processes have spectral densities of the same shape or are flat. The optimum filter turns out to be a band-limited noise whitener. The factors governing false alarm and detection probabilities are the filter bandwidth, the sample duration, and the signal level compared to the noise. Two sets of receiver operating characteristic curves are presented to complete the example.  相似文献   

9.
Detection of a Distributed Target   总被引:3,自引:0,他引:3  
The influence of increasing range resolution on the detectability of targets with dimensions greater than the resolution cell is studied. An N-cell target model is assumed, which contains k reflecting cells, each reflecting independently according to the same Rayleigh amplitude distribution. It will be referred to as the (N,k) target. Detection based on one transmitted pulse is performed against a background of white normal noise. Detection in stationary clutter is also considered. The optimum detector is obtained but, in view of its complexity, the performance of a simpler detector, the square-law envelope detector with linear integrator (SLEDLI), is analyzed, and a formula for the probability of detection is obtained. Graphs are presented which show the probability of detection as a function of signal-to-noise ratio (SNR) for various values of N k, and false alarm probability. For N/k not too large it is shown that the SLEDLI is near optimum.  相似文献   

10.
Deals with the problem of detecting subspace random signals against correlated non-Gaussian clutter exploiting different degrees of knowledge on target and clutter statistical characteristics. The clutter process is modeled by the compound-Gaussian distribution. In the first part of the paper, the optimum Neyman-Pearson (NP) detector, the generalized likelihood ratio test (GLRT), and a constant false-alarm rate (CFAR) detector are sequentially derived both for the Gaussian and the compound-Gaussian scenarios. Different interpretations of the various detectors are provided to highlight the relationships and the differences among them. In particular, we show how the GLRT detector may be recast into an estimator-correlator form and into another form, namely a generalized whitening-matched filter (GWMF), which is the GLRT detector against Gaussian disturbance, compared with a data-dependent threshold. In the second part of this paper, the proposed detectors are tested against both simulated data and measured high resolution sea clutter data to investigate the dependence of their performance on the various clutter and signal parameters.  相似文献   

11.
Structures for radar detection in compound Gaussian clutter   总被引:1,自引:0,他引:1  
The problem of coherent radar target detection in a background of non-Gaussian clutter modeled by a compound Gaussian distribution is studied here. We show how the likelihood ratio may be recast into an estimator-correlator form that shows that an essential feature of the optimal detector is to compute an optimum estimate of the reciprocal of the unknown random local power level. We then proceed to show that the optimal detector may be recast into yet another form, namely a matched filter compared with a data-dependent threshold. With these reformulations of the optimal detector, the problem of obtaining suboptimal detectors may be systematically studied by either approximating the likelihood ratio directly, utilizing a suboptimal estimate in the estimator-correlator structure or utilizing a suboptimal function to model the data-dependent threshold in the matched filter interpretation. Each of these approaches is studied to obtain suboptimal detectors. The results indicate that for processing small numbers of pulses, a suboptimal detector that utilizes information about the nature of the non-Gaussian clutter can be implemented to obtain quasi-optimal performance. As the number of pulses to be processed increases, a suboptimal detector that does not require information about the specific nature of the non-Gaussian clutter may be implemented to obtain quasi-optimal performance  相似文献   

12.
Studies of target detection algorithms that use polarimetric radardata   总被引:2,自引:0,他引:2  
Algorithms are described which make use of polarimetric radar information in the detection and discrimination of targets in a ground clutter background. The optimal polarimetric detector (OPD) is derived. This algorithm processes the complete polarization scattering matrix (PSM) and provides the best possible detection performance from polarimetric radar data. Also derived is the best linear polarimetric detector, the polarimetric matched filter (PMF), and the structure of this detector is related to simple polarimetric target types. New polarimetric target and clutter models are described and used to predict the performance of the OPD and the PME. The performance of these algorithms is compared with that of simpler detectors that use only amplitude information to detect targets. The ability to discriminate between target types by exploring differences in polarimetric properties is discussed  相似文献   

13.
We study the design of constant false-alarm rate (CFAR) tests for detecting a rank-one signal in the presence of background Gaussian noise with unknown spatial covariance. We look at invariant tests, i.e., those tests whose performance is independent of the nuisance parameters, like the background noise covariance. Such tests are shown to have the desirable CFAR property. We characterize the class of all such tests by showing that any invariant decision statistic can be written as a function of two basic statistics which are in fact the adaptive matched filter (AMF) statistic and Kelly's generalized likelihood ratio statistic. Further, we establish an optimum test in the limit of low signal-to-noise ratio (SNR), the locally most powerful invariant (LMPI) test. We also derive the bound for the probability of detection of any invariant detector, at a fixed false-alarm rate, and compare the LMPI and the published detectors (Kelly and AMF) to it  相似文献   

14.
An adaptive threshold detector to test for the presence of a weak signal in additive non-Gaussian noise of unknown level is discussed. The detector consists of a locally optimum detector, a noise level estimator, and a decision device. The detection threshold is made adaptive according to the information provided by the noise level estimator in order to keep a fixed false-alarm probability. Asymptotic performance characteristics are obtained indicating relationships among the basic system parameters such as the reference noise sample size and the underlying noise statistics. It is shown that, as the reference noise sample size is made sufficiently large, the adaptive threshold detector attains the performance of a corresponding locally optimum detector for detecting the weak signal were the noise level known.  相似文献   

15.
Power estimates from smoothed detector outputs of stationary signals are analyzed for linear, square law, and logarithmic receiverdetectors. Smoothing is accomplished with a first-order recursive digital filter. lnput amplitude is assumed to be Rayleigh distributed and detector output samples independent. Expansion of results to other distributions is indicated.  相似文献   

16.
The combination of an antenna, a 100 kHz bandpass filter, a hard limiter, and a sequential detector can supply highly accurate Loran-C data to a digital processor, even under low signal-to-noise-ratio conditions. For such a simple, low-cost receiver, calculations are given for the accuracy of the envelope and phase tracking of the Loran-C signal as a function of the signal-to-noise (Gaussian and atmospheric) ratio, averaging time, and radian speed of the observer with respect to the transmitter. Mentioned are the quasi-noise censoring effects of the hard limiter. Besides the Loran-C application, the hard limiter-sequential detector system can in general be applied for low-cost, synchronous signal detection under poor signal-to-noise ratio.  相似文献   

17.
We suggest a method, based on the use of filter bank and higher order statistics (cumulants), for detection of transient signals. The method first uses a bandpass filter bank, which separates the spectrum of the observed signal into narrow frequency bands. Each subfilter of the filter bank is then followed by a cumulant estimator, and thereby suppressing colored noise. By selecting those subfilters that have large output energies, the filter bank can approximate the behavior of a matched filter. Moreover, no a priori information about the waveform of the signal is needed. The performance of the detector is evaluated by using a simulated signal as well as a measured signal. The presented detector is compared with the optimal matched filter detector.  相似文献   

18.
Convergence results for a mean level adaptive detector (MLAD) are presented. The MLAD consists of an adaptive matched filter (for spatially correlated inputs) followed by a mean level detector (MLD). The optimal weights of the adaptive matched filter are estimated from one batch of data and applied to a statistically independent batch of nonconcurrent data. The threshold of the MLD is determined from the resultant data. Thereafter a candidate cell is compared against this threshold. Probabilities of false alarm and detection are derived as a function of the threshold factor, the order of the matched filter, the number of independent samples per channel used to calculate the adaptive matched filter weights, the number of samples used to set the MLD threshold, and the output signal-to-noise power ratio of the optimal matched filter. A number of performance curves are shown and discussed  相似文献   

19.
The optimum rank detector structure, in the Neyman-Pearson sense and under Gaussian noise conditions, is approximated by a suboptimum structure that depends on an adjustable parameter. This new rank detector, which operates on radar video signal, includes other well-known detectors as particular cases. The asymptotic relative efficiency (ARE) of the proposed rank detector is computed, with its maximum value the ARE of the locally optimum rank detector (LORD). The detection probability versus signal-to-noise ratio, and the effects of interfering targets are also calculated by Monte-Carlo simulations for different parameter values.  相似文献   

20.
 许多作者讨论过非参量秩检测器在雷达信号处理中的应用。秩检测器首先把接收波形样本转换为秩。如果检验单元和参考单元的噪声样本独立和分布,则无信号时检验单元的秩具有离散均匀分布,与输入噪声的分布无关。所以秩检测器可能提供分布自由的恒虚警率性能。量化秩检测器(QRD)只对二进量化秩进行积累,所以它实现起来很经济。本文分析QRD的检测性能。证明QRD有一最佳秩量化门限(ORQT)。确定高斯和韦伯噪声中的ORQT。另外,把QRD同高斯噪声中的局部最佳秩检测器和最佳参量检测器进行比较。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号