首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 481 毫秒
1.
新一代运载火箭地面测试发控系统一体化设计概述   总被引:2,自引:0,他引:2  
系统介绍了以民用新一代运载火箭 (系列 )为背景 ,以一体化的设计思想为指导原则 ,开展的地面测试发控系统的研究、设计工作 ,着重论述了以控制系统为核心的一体化设计的必要性和可行性 ,同时对地面测试发控系统设计方案和总体布局进行了概括阐述  相似文献   

2.
新一代运载火箭地面测试发控系统一体化设计概述   总被引:1,自引:0,他引:1  
系统介绍了以民用新一代大型运载火箭 (系列 )为背景 ,以一体化设计思想为指导原则 ,开展的地面测试发控系统的研究、设计工作 ,着重论述了以控制系统为核心的一体化设计的必要性和重要性 ,同时对测试发控系统设计方案和总体布局进行了概括阐述。  相似文献   

3.
首先以美国运载火箭测试发控系统的发展过程为例详细介绍了运载火箭测试发控系统的发展阶段,然后论述了我国目前的测试发控系统的特点、优点及表现出来的问题,接着分析了运载火箭测试发控系统的发展趋势,并在此基础上介绍了几个对运载火箭测试发控系统的发展趋势有影响的新技术,最后在结束语中对我国测试发控领域科研工作以后要解决的中心问题进行了分析并提出了见解。  相似文献   

4.
从分析航天型号地面测试发控系统的基本任务出发,结合型号研制实践,根据通用化、系列化、组合化即“三化”的设计要求,提出了地面测试发控系统“三化”设计的指导思想、基本原则和方案设翅,并对当前体制下实现“三化”方案可能遇到的问题,提出了建议。  相似文献   

5.
随着信息技术的发展,运载火箭测发控系统的自动化程度大大提高,但技术的进步带来了要求的提高,使得测发控系统又显现出诸多不足.本文通过梳理当前测发控系统存在的主要问题,提出智能、全面、便捷应是未来测试发射控制技术努力的方向,以达到减少发射专业保障队伍、提高测试覆盖性和真实性、简化发射场操作的目的.文中提出的相关技术,部分已在我国新一代运载火箭中得到应用.随着这些技术成熟度的提高,将极大地提升长征系列运载火箭的竞争力.  相似文献   

6.
运载火箭总体多学科协同优化平台方案研究   总被引:1,自引:0,他引:1  
吴魁  华楠  弓川锦  罗军 《宇航学报》2009,30(6):2072-2076
为了将多学科设计优化应用于运载火箭总体设计中,提出了基于MDO思想的运载火箭 多学科协同优化设计平台方案。系统论述了平台定位、功能需求、顶层组成框架设计、人员 角色、总体优化设计活动流程等相关内容。平台实现了运载火箭的专业设计工具集成、信息 集成、总体设计流程定制,并支持分布式协同设计和优化设计。〖JP〗  相似文献   

7.
对于分布式远距离运载火箭测试发射控制系统(简称测发控系统)而言,基于网络的通信系统是整个测发控系统的神经中枢.本文针对测发控系统高可靠性的要求,提出了3种网络拓扑结构并进行了可靠性定量分析,最终确定了"环形交叉"的网络拓扑结构.  相似文献   

8.
为满足舰艇空间窄小的要求,地面测发控系统设备的结构体积受到严格限制.本文阐述了一种舰载武器多通道快速测试发射的测发控系统方案,以实现武器的点选、组选和全选,同时对多发武器进行监控、测试,并快速实施发射.该方案的应用,将大大提高舰载武器的战斗能力和反应速度,给我国武器发射技术带来飞速发展.  相似文献   

9.
随着运载火箭地面测发控软件的规模越来越大,测发控软件的复用成为当前运载火箭地面软件的发展趋势。本文介绍了一种新颖的运载火箭地面测发控软件复用技术,该技术将面向对象技术和数据库技术相结合,实现了运载火箭地面软件的复用,在加快试验进度的同时,也提高了程序的可靠性。目前,该技术已被成功应用在某新型运载火箭的地面测发控软件中。  相似文献   

10.
前言     
弹道导弹、运载火箭控制系统和测试发控系统的研究、设计、试验是十二所的主要任务。多年来,在各级领导的指导、支持、帮助下,和各兄弟单位大力协同下,我们完成了多个不同战术技术指标的导弹和运载火箭控制系统的研制任务。实弹(箭)发射的落点偏差(人轨精度)都能满足研制技术任务书的要求。1990年4月发射“亚洲一号”卫星,人  相似文献   

11.
运载火箭测发控网络设计   总被引:3,自引:0,他引:3  
运载火箭测试发射控制系统对数据处理能力、数据通信能力的要求越来越高。本文采用最新的网络通信技术,结合CZ-3A运载火箭测发控网络的实际设计需求和设计原则,概要介绍了运载火箭测发控网络的特点,着重从测发控网络的拓扑结构、双网卡捆绑技术、静态路由技术等五方面详细阐述了测发控网络的设计,最后通过测发控网络的功能测试验证了该设计的可靠性和先进性。  相似文献   

12.
为适应未来高频度发射任务需求,在借鉴国内外远程协同及信息应用技术基础上,以中国运载火箭组装、测试及发射任务为背景,通过对功能需求和技术难点分析,设计了运载火箭组装与测试远程协同应用系统,对关键技术进行了分析和论述,为运载火箭远程测试、协同决策发射提供有效技术解决途径。  相似文献   

13.
《Acta Astronautica》2010,66(11-12):1706-1716
The Ares I–X Flight Test Vehicle is the first in a series of flight test vehicles that will take the Ares I Crew Launch Vehicle design from development to operational capability. Ares I–X is scheduled for a 2009 flight date, early enough in the Ares I design and development process so that data obtained from the flight can impact the design of Ares I before its Critical Design Review. Decisions on Ares I–X scope, flight test objectives, and FTV fidelity were made prior to the Ares I systems requirements being baselined. This was necessary in order to achieve a development flight test to impact the Ares I design. Differences between the Ares I–X and the Ares I configurations are artifacts of formulating this experimental project at an early stage and the natural maturation of the Ares I design process. This paper describes the similarities and differences between the Ares I–X Flight Test Vehicle and the Ares I Crew Launch Vehicle. Areas of comparison include the outer mold line geometry, aerosciences, trajectory, structural modes, flight control architecture, separation sequence, and relevant element differences. Most of the outer mold line differences present between Ares I and Ares I–X are minor and will not have a significant effect on overall vehicle performance. The most significant impacts are related to the geometric differences in Orion Crew Exploration Vehicle at the forward end of the stack. These physical differences will cause differences in the flow physics in these areas. Even with these differences, the Ares I–X flight test is poised to meet all five primary objectives and six secondary objectives. Knowledge of what the Ares I–X flight test will provide in similitude to Ares I—as well as what the test will not provide—is important in the continued execution of the Ares I–X mission leading to its flight and the continued design and development of Ares I.  相似文献   

14.
运载火箭智慧控制系统技术研究   总被引:2,自引:0,他引:2  
总结了国内外先进运载火箭控制系统的特点,结合我国新一代运载火箭的现状,提出目前我国运载火箭控制系统发展亟待解决的问题。在此基础上,提出了适应现阶段智能高可靠需求的自主轨道规划技术、在线故障辨识技术、姿控喷管隔离重构技术和全程四元数控制技术,所提技术可有效提高控制系统可靠性,使全箭在面对非灾难性故障时具有较强的自主性和适应性。  相似文献   

15.
The Ares I–X Flight Test Vehicle is the first in a series of flight test vehicles that will take the Ares I Crew Launch Vehicle design from development to operational capability. Ares I–X is scheduled for a 2009 flight date, early enough in the Ares I design and development process so that data obtained from the flight can impact the design of Ares I before its Critical Design Review. Decisions on Ares I–X scope, flight test objectives, and FTV fidelity were made prior to the Ares I systems requirements being baselined. This was necessary in order to achieve a development flight test to impact the Ares I design. Differences between the Ares I–X and the Ares I configurations are artifacts of formulating this experimental project at an early stage and the natural maturation of the Ares I design process. This paper describes the similarities and differences between the Ares I–X Flight Test Vehicle and the Ares I Crew Launch Vehicle. Areas of comparison include the outer mold line geometry, aerosciences, trajectory, structural modes, flight control architecture, separation sequence, and relevant element differences. Most of the outer mold line differences present between Ares I and Ares I–X are minor and will not have a significant effect on overall vehicle performance. The most significant impacts are related to the geometric differences in Orion Crew Exploration Vehicle at the forward end of the stack. These physical differences will cause differences in the flow physics in these areas. Even with these differences, the Ares I–X flight test is poised to meet all five primary objectives and six secondary objectives. Knowledge of what the Ares I–X flight test will provide in similitude to Ares I—as well as what the test will not provide—is important in the continued execution of the Ares I–X mission leading to its flight and the continued design and development of Ares I.  相似文献   

16.
为降低全生命周期成本,提高航天运载器综合竞争力,提出了基于综合电子方案的某型运载器电气系统设计实现方法。首先对该运载器功能需求进行了分析,建立了基于综合电子的系统分布式集成逻辑架构,然后分别就系统任务规划与操作系统分区结构、基于时间触发以太网(TTE)的一体化机内外总线体制以及系统容错处理机制等关键技术及实现途径开展了分析论证。本方案提出的相关软、硬件设计方法有利于实现系统快速集成与系统内资源共享,同时为实现冗余容错控制、在线任务规划等功能提供了便利。  相似文献   

17.
Following the successful maiden flight of the Long March 11(LM-11) launch vehicle from the Jiuquan Satellite Launch Center in September 2015, the first sea-launched carrier rocket dedicated to provide a launch service for small satellites and their constellations, the Long March 11 Sea Launch(LM-11 SL) has been under development by the China Academy of Launch Vehicle Technology(CALT) and the China Great Wall Industry Corporation(CGWIC). It is planned to commence launch service in 2018. Based on the LM-11, a land-launched four-staged solid launch vehicle which has entered the market and accomplished launch missions for several small satellites in the past 3 years, the newly adopted sea launch technology enables transport and launch of LM-11 SL from maritime ships, providing flexible launch location selection.After inheriting the mature launch vehicle technologies from previous members of the Long March launch vehicle family and adopting a new way of launching from the sea, the LM-11 SL is capable of sending payloads into low Earth orbits with all altitudes and inclinations, from 200 km to 1000 km, from equatorial to sun synchronous, within a shortduration launch campaign. The LM-11 SL provides a flexible, reliable and economical launch service for the global small satellite industry.  相似文献   

18.
载人运载火箭是运载火箭家族中一个比较特殊的种类。通过对历史上载人运载火箭发展的简单回顾,总结了载人运载火箭的主要特点。从载人运载火箭总体设计、分系统设计等方面展望了未来载人运载火箭设计需求,供未来载人运载火箭的设计参考。  相似文献   

19.
New program was proposed in LM-6 rolling control technology that using high-pressure staged combustion gas.Launch vehicle rolling control by just one engine was realized.Under the limit of the rolling control moment of the launch vehicle,a new attitude dynamic model is established.Interference source and how to reduce the effect was analyzed,and method of designing a pre-compensated robust controller was proposed.Simulation and flight results showed that the attitude dynamic model established and the pre-compensation robust controller proposed in this paper could solve the key problems with a strong coupling attitude controller,and realize high quality and high reliability control in wind areas,and improve the capability of the launch vehicle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号