首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 311 毫秒
1.
Interplanetary shock observations since the prior Solar Terrestrial Physics Symposium in 1978 are reviewed. Since the interval coincides with the recent solar maximum, emphasis is placed on shocks associated with transient solar phenomena, including coronal transients and eruptive prominences as well as flares. A good correlation between shocks and Storm Sudden Commencements has persisted into the recent maximum. Shocks have been identified that are associated with disappearing filaments and coronal transients rather than with flares. Significant progress has been made in the indirect observation of shocks near the Sun as a result of radio wave measurements in interplanetary space and measurement of the scintillation and spectral broadening of spacecraft radio transmissions. Preliminary results regarding the thickness of interplanetary shocks have appeared. Several quasi-parallel shocks propagating more nearly along, rather than across, the magnetic field have been identified. The plasma drivers accompanying interplanetary shocks have received increased attention and distinctive features have been found in electron, ion and magnetic field data.  相似文献   

2.
This review summarizes both the direct spacecraft observations of non-relativistic solar electrons, and observations of the X-ray and radio emission generated by these particles at the Sun and in the interplanetary medium. These observations bear on three physical processes basic to energetic particle phenomena: (1) the acceleration of particles in tenuous plasmas; (2) the propagation of energetic charged particles in a disordered magnetic field, and (3) the interaction of energetic charged particles with tenuous plasmas to produce electromagnetic radiation. Because these electrons are frequently accelerated and emitted by the Sun, mostly in small and relatively simple flares, it is possible to define a detailed physical picture of these processes.In many small solar flares non-relativistic electrons accelerated during flash phase constitute the bulk of the total flare energy. Thus the basic flare mechanism in these flares essentially converts the available flare energy into fast electrons. Non-relativistic electrons exhibit a wide variety of propagation modes in the interplanetary medium, ranging from diffusive to essentially scatter-free. This variability in the propagation may be explained in terms of the distribution of interplanetary magnetic field fluctuations. Type III solar radio burst emission is generated by these electrons as they travel out to 1 AU and beyond. Recent in situ observations of these electrons at 1 AU, accompanied by simultaneous observations of the low frequency radio emission generated by them at 1 AU provide quantitative information on the plasma processes involved in the generation of type III bursts.  相似文献   

3.
4.
The Electric Antennas for the STEREO/WAVES Experiment   总被引:1,自引:0,他引:1  
The STEREO/WAVES experiment is designed to measure the electric component of radio emission from interplanetary radio bursts and in situ plasma waves and fluctuations in the solar wind. Interplanetary radio bursts are generated from electron beams at interplanetary shocks and solar flares and are observed from near the Sun to 1 AU, corresponding to frequencies of approximately 16 MHz to 10 kHz. In situ plasma waves occur in a range of wavelengths larger than the Debye length in the solar wind plasma λ D ≈10 m and appear Doppler-shifted into the frequency regime down to a fraction of a Hertz. These phenomena are measured by STEREO/WAVES with a set of three orthogonal electric monopole antennas. This paper describes the electrical and mechanical design of the antenna system and discusses efforts to model the antenna pattern and response and methods for in-flight calibration.  相似文献   

5.
Type II, III, and continuum solar radio events, as well as intense terrestrial magnetospheric radio emissions, were observed at low frequencies (10 MHz to 30 kHz) by the IMP-6 satellite during the period of high solar activity in August 1972. This review covers briefly the unique direction finding capability of the experiment, as well as a detailed chronology of the low frequency radio events, and, where possible, their association with both groundbased radio observations and solar flares. The attempted observation of solar bursts in the presence of intense magnetospheric noise may, as illustrated, lead to erroneous results in the absence of directional information. The problem of assigning an electron density scale and its influence on determining burst trajectories is reviewed. However, for the disturbed conditions existing during the period in question, we feel that such trajectories cannot be determined accurately by this method. In conclusion, the capabilities, limitations, and observing programs of present and future satellite experiments are briefly discussed.  相似文献   

6.
Solar radio bursts of spectral type II provide one of the chief diagnostics for the propagation of shocks through the solar corona. Radio data on the shocks are compared with computer models for propagation of fast-mode MHD shocks through the solar corona. Data on coronal shocks and high-velocity ejecta from solar flares are then discussed in terms of a general model consisting of three main velocity regimes.An invited paper presented at STIP Workshop on Shock Waves in the Solar Corona and Interplanetary Space, 15–19 June, 1980, Smolenice, Czechoslovakia.  相似文献   

7.
Ground-based observations of the variable solar radio emission ranging from few millimetres to decametres have been used here as a diagnostic tool to gain coherent phenomenological understanding of the great 2, 4 and 7 August, 1972 solar events in terms of dominant physical processes like generation and propagation of shock waves in the solar atmosphere, particle acceleration and trapping.The basic data used in this review have been collected by many workers throughout the world utilizing a variety of instruments such as fixed frequency radiometers, multi-element interferometers, dynamic spectrum analysers and polarimeters. Four major flares are selected for detailed analysis on the basis of their ability to produce energetic protons, shock waves, polar cap absorptions (PCA) and sudden commencement (SC) geomagnetic storms. A comparative study of their radio characteristics is made. Evidence is seen for the pulsations during microwave bursts by the mechanism similar to that proposed by McLean et al. (1971), to explain the pulsations in the metre wavelength continuum radiation. It is suggested that the multiple peaks observed in some microwave bursts may be attributable to individual flares occurring sequentially due to a single initiating flare. Attempts have been made to establish identification of Type II bursts with the interplanetary shock waves and SC geomagnetic storms. Furthermore, it is suggested that it is the mass behind the shock front which is the deciding factor for the detection of shock waves in the interplanetary space. It appears to us that more work is necessary in order to identify which of the three moving Type IV bursts (Wild and Smerd, 1972), namely, advancing shock front, expanding magnetic arch and ejected plasma blob serves as the piston-driver behind the interplanetary shocks. The existing criteria for proton flare prediction have been summarized and two new criteria have been proposed. Observational limitations of the current ground-based experimental techniques have been pointed out and a suggestion has been made to evolve appropriate observational facilities for solar work before the next Solar Maximum Year (SMY).  相似文献   

8.
Recent observations of the energetic particles produced in solar flares indicate that the production of electrons, with energies up to about 100 keV, is a fairly common feature of small flares. In those flares the acceleration of protons and other nuclei does not extend beyond about 1 MeV.The X-ray emission often exhibits two distinct components of which the first one is produced by non-thermal, the second by thermal electrons through bremsstrahlung collisions with the ambient ions. Along with these X rays, radio emission, in the microwave region, is observed. This radio emission is usually interpreted as due to gyrosynchrotron radiation from the same electrons.In this review a discussion is presented of the processes occurring in solar flares with special reference to the acceleration and radiation processes.  相似文献   

9.
Energy release into coronal plasmas is observable in the forms of heating and acceleration. In flares and active stars, heating and acceleration have been found to be related as indicated by an approximately constant ratio of microwave (synchrotron) and soft X-ray (thermal) emission. The discovery suggests a flare-like heating process for the quiescent coronae of active stars.The energy release in solar flares involves several time scales: (i) The largest is the rate of homologous flares in an active region of the order of one per five hours. (ii) Hard X-ray andH emissions suggest a total flare duration of ten minutes, (iii) with individual episodes of contiguous acceleration of one minute. (iv) Elementary hard X-ray peaks have 5–10 s duration, corresponding to groups of beams observable as type III radio bursts. (v) The effective injection time of these beams is of the order 0.1 s. (vi) The smaller time scale is observed in narrowband radio spikes in the 0.2–8 GHz range with durations of a few times 0.01 s.  相似文献   

10.
Coronal transient phenomena   总被引:1,自引:0,他引:1  
Solar coronal transients, particularly those caused by flares and eruptive prominences, play a major role in the fields of solar-terrestrial physics and astrophysics. In the former field, coronal transients and their associated interplanetary disturbances are responsible for solar and galactic cosmic ray modulations, as well as planetary magnetospheric and ionospheric disturbances. In the latter field, supernovae remnants are scaled-up manifestations of such disturbances; that is they are stellar, rather than solar, coronal transients. Study of the more accessible solar transients is proving invaluable in both fields and is, therefore, selected for attention in this paper.A series of coronal transient observations is discussed in the spirit of a representative overview following some introductory remarks on the background solar wind. One of these observations is chosen because its interplanetary signature-the shock wave-was detected by two spacecraft at different heliocentric radii. Other cases are chosen because of the extended observations of embedded eruptive prominences. Progress is also being made in the interdisciplinary areas of optical imagery complemented with radio astronomical techniques.Finally, several recent theoretical models and MHD computer simulation studies are summarized. It is suggested that further comparison of specific events with such models promises a rich harvest of physical understanding of the origin, structure and interplanetary progeny of coronal transients.Paper presented at the IX-th Lindau Workshop The Source Region of the Solar Wind.  相似文献   

11.
This review covers fairly comprehensively experimental and theoretical research on the fine structure of types zebra pattern (ZP) and fiber bursts (FB) in solar type II + IV radio bursts. The basic attention is given to the latest experimental data. A comparative analysis of several recent solar type IV radio outbursts with these fine structure in dynamical radio spectra is carried out using available ground-based and satellite data (Yohkoh, SOHO, TRACE, RHESSI). New data on microwave zebra structures and fiber bursts testifies that they are analogous to similar structures observed at meter wavelengths. The discovery of the superfine structure, in the form of millisecond spikes is the most significant new effect in the cm range. All basic theoretical models of the zebra pattern and fiber bursts are discussed critically. Two main models are studied for their interpretation: (i) interactions between electrostatic plasma waves and whistlers, (ii) radio emission at double plasma resonance (DPR). The relative significance of several possible mechanisms remains uncertain.  相似文献   

12.
The Konus-W experiment to be flown on board the GGS-Wind spacecraft is designed to observe gamma-ray bursts and solar flares with moderate spectral and high time resolution. Two large scintillators are used to provide omnidirectional sensitivity. The primary scientific objectives are the study of the continuum energy spectra and spectral features of these events in the energy range of 10 keV to 10 MeV, as well as their time histories in soft, medium, and hard energy bands, with a time resolution to 2 ms.  相似文献   

13.
A review is given of heliospheric radio emissions. Only radio emissions generated well away from the Sun (beyond a few solar radii) and well away from the magnetized planets are considered. These consist of (1) type III radio bursts, (2) type II radio bursts, and (3) heliospheric 2–3 kHz radio emissions. The physical processes involved in the generation of each of these radio emissions are described with an emphasis on recent developments. A prognosis is given of advances that can be expected from the forthcoming flight of Ulysses over the poles of the Sun and the flights of Voyagers 1 and 2 to the outer limits of the heliosphere.  相似文献   

14.
G. Mann 《Space Science Reviews》1994,68(1-4):199-203
Shock waves in the solar corona manifest themselves in type II bursts in dynamic radio spectra. Recently, short large amplitude magnetic structures (SLAMS) have been observed in the vicinity of the quasi-parallel region of Earth's bow shock as an example of a collisionless shock wave in space plasmas. SLAMS are able to accelerate electrons to high energies by shock drift acceleration. Assuming that SLAMS also appear in the vicinity of super-critical, quasi-parallel shocks in the corona, electrons can also be accelerated at quasi-parallel shocks and, subsequently, generate radio waves manifesting in solar type II radio bursts.  相似文献   

15.
3He-rich solar energetic particle (SEP) events show huge enrichments of 3He and association with kilovolt electrons and Type-III radio bursts. Observations from a new generation of high resolution instruments launched on the Wind, ACE, Yohkoh, SOHO, TRACE, and RHESSI spacecraft have revealed many new properties of these events: the particle energy spectra are found to be either power-law or curved in shape, with the 3He spectrum often being distinctly different from other species. Ultra-heavy nuclei up to >200 amu are found to be routinely present at average enrichments of >200 times solar-system abundances. The high ionization states previously observed near ∼1 MeV/nucleon have been found to decrease towards normal solar coronal values in these events. The source regions have been identified for many events, and are associated with X-ray jets and EUV flares that are associated with magnetic reconnection sites near active regions. This paper reviews the current experimental picture and theoretical models, with emphasis on the new insights found in the last few years.  相似文献   

16.
Large solar flares are often accompanied by both emissions of high-energy quanta and particles. The emissions such as gamma-ray and hard X-ray photons are generated due to the interaction of high-energy nuclei and electrons with gases ambient in the flare regions and the solar atmosphere. Nonthermal radio emissions of wide frequency band are produced from energetic electrons while being decelerated by the action of plasmas and magnetic fields ambient in the flare site and its neighboring region. To understand the emission mechanism of these high-energy quanta on the Sun, it is, therefore, necessary to find the acceleration mechanism for both nuclei and electrons, which begins almost simultaneously with the onset of solar flares.A part of the accelerated nuclei and electrons are later released from the solar atmosphere into the outer space and eventually lost from the space of the solar system. Their behavior in the interplanetary space is considered to study the large-scale structure of plasmas and magnetic fields in this space.The observations and studies of high-energy phenomena on the Sun are thus thought of as giving some crucial hint important to understand the nature of various high-energy phenomena being currently observed in the Universe.  相似文献   

17.
Langmuir waves and turbulence resulting from an electron beam-plasma instability play a fundamental role in the generation of solar radio bursts. We report recent theoretical advances in nonlinear dynamics of Langmuir waves. First, starting from the generalized Zakharov equations, we study the parametric excitation of solar radio bursts at the fundamental plasma frequency driven by a pair of oppositely propagating Langmuir waves with different wave amplitudes. Next, we briefly discuss the emergence of chaos in the Zakharov equations. We point out that chaos can lead to turbulence in the source regions of solar radio emissions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
Electrons with near-relativistic (E≳30 keV, NrR) and relativistic (E≳0.3 MeV) energies are often observed as discrete events in the inner heliosphere following solar transient activity. Several acceleration mechanisms have been proposed for the production of those electrons. One candidate is acceleration at MHD shocks driven by coronal mass ejections (CMEs) with speeds ≳1000 km s−1. Many NrR electron events are temporally associated only with flares while others are associated with flares as well as with CMEs or with radio type II shock waves. Since CME onsets and associated flares are roughly simultaneous, distinguishing the sources of electron events is a serious challenge. On a phenomenological basis two classes of solar electron events were known several decades ago, but recent observations have presented a more complex picture. We review early and recent observational results to deduce different electron event classes and their viable acceleration mechanisms, defined broadly as shocks versus flares. The NrR and relativistic electrons are treated separately. Topics covered are: solar electron injection delays from flare impulsive phases; comparisons of electron intensities and spectra with flares, CMEs and accompanying solar energetic proton (SEP) events; multiple spacecraft observations; two-phase electron events; coronal flares; shock-associated (SA) events; electron spectral invariance; and solar electron intensity size distributions. This evidence suggests that CME-driven shocks are statistically the dominant acceleration mechanism of relativistic events, but most NrR electron events result from flares. Determining the solar origin of a given NrR or relativistic electron event remains a difficult proposition, and suggestions for future work are given.  相似文献   

19.
Coronal mass ejections (CMEs) were discovered in the early 1970s when space-borne coronagraphs revealed that eruptions of plasma are ejected from the Sun. Today, it is known that the Sun produces eruptive flares, filament eruptions, coronal mass ejections and failed eruptions; all thought to be due to a release of energy stored in the coronal magnetic field during its drastic reconfiguration. This review discusses the observations and physical mechanisms behind this eruptive activity, with a view to making an assessment of the current capability of forecasting these events for space weather risk and impact mitigation. Whilst a wealth of observations exist, and detailed models have been developed, there still exists a need to draw these approaches together. In particular more realistic models are encouraged in order to asses the full range of complexity of the solar atmosphere and the criteria for which an eruption is formed. From the observational side, a more detailed understanding of the role of photospheric flows and reconnection is needed in order to identify the evolutionary path that ultimately means a magnetic structure will erupt.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号